
Chun Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/953870/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Green Synthesis of Ag–TiO ₂ Supported on Porous Glass with Enhanced Photocatalytic Performance for Oxidative Desulfurization and Removal of Dyes under Visible Light. ACS Sustainable Chemistry and Engineering, 2018, 6, 13276-13286.	6.7	78
2	Highly Selective Production of <i>p</i> -Xylene from 2,5-Dimethylfuran over Hierarchical NbO _{<i>x</i>} -Based Catalyst. ACS Sustainable Chemistry and Engineering, 2018, 6, 1891-1899.	6.7	41
3	Ultra-selective p-xylene production through cycloaddition and dehydration of 2,5-dimethylfuran and ethylene over tin phosphate. Applied Catalysis B: Environmental, 2019, 259, 118108.	20.2	38
4	Highly Selective Production of Biobased <i>p</i> -Xylene from 2,5-Dimethylfuran over SiO ₂ –SO ₃ H Catalysts. Industrial & Engineering Chemistry Research, 2017, 56, 5852-5859.	3.7	35
5	Production of <i>p</i> -xylene from bio-based 2,5-dimethylfuran over high performance catalyst WO ₃ /SBA-15. Catalysis Science and Technology, 2017, 7, 5540-5549.	4.1	31
6	Efficient Production of 5-Hydroxymethylfurfural Enhanced by Liquid–Liquid Extraction in a Membrane Dispersion Microreactor. ACS Sustainable Chemistry and Engineering, 2018, 6, 3992-3999.	6.7	31
7	Synergistic effect between Ni single atoms and acid–base sites: Mechanism investigation into catalytic transfer hydrogenation reaction. Journal of Catalysis, 2021, 393, 1-10.	6.2	28
8	Green synthesis and enhanced photocatalytic activity of Ce-doped TiO2 nanoparticles supported on porous glass. Particuology, 2017, 34, 103-109.	3.6	25
9	Upgrade of Solvent-Free Acetone–Butanol–Ethanol Mixture to High-Value Biofuels over Ni-Containing MgO–SiO2 Catalysts with Greatly Improved Water-Resistance. ACS Sustainable Chemistry and Engineering, 2017, 5, 8181-8191.	6.7	25
10	Upgrading <i>n</i> -Butanol to Branched Alcohols over Ni/Ca _{<i>x</i>} Mg _{<i>y</i>} O. ACS Sustainable Chemistry and Engineering, 2020, 8, 16960-16967.	6.7	21
11	Fast and continuous synthesis of 2,5-furandicarboxylic acid in a micropacked-bed reactor. Chemical Engineering Journal, 2022, 442, 136110.	12.7	17
12	Improved Selectivity of Long-Chain Products from Aqueous Acetone–Butanol–Ethanol Mixture over High Water Resistant Catalyst Based on Hydrophobic SBA-16. ACS Sustainable Chemistry and Engineering, 2019, 7, 10323-10331.	6.7	16
13	Is hydrolysis a bad news for p-xylene production from 2,5-dimethylfuran and ethylene? Mechanism investigation into the role of acid strength during 2,5-hexanedione conversion. Journal of Catalysis, 2021, 401, 214-223.	6.2	16
14	Highly Selective Production of 2,5-Dimethylfuran from Fructose through Tailoring of Catalyst Wettability. Industrial & Engineering Chemistry Research, 2019, 58, 10844-10854.	3.7	14
15	Domino Reactions for Biofuel Production from Zymotic Biomass Wastes over Bifunctional Mg-Containing Catalysts. ACS Sustainable Chemistry and Engineering, 2019, 7, 18943-18954.	6.7	14
16	Controllability and flexibility in particle manufacturing of a segmented microfluidic device with passive picoinjection. AICHE Journal, 2018, 64, 3817-3825.	3.6	12
17	Monodispersed Pd Nanoparticles Supported on Mg–Al Mixed Metal Oxides: A Green and Controllable Synthesis. ACS Omega, 2016, 1, 498-506.	3.5	10
18	Catalytic hydrogenation of 2-ethylanthraquinone using an in situ synthesized Pd catalyst. RSC Advances, 2016, 6, 23942-23948.	3.6	10

CHUN SHEN

#	Article	IF	CITATIONS
19	Preparation of Au Nanocolloids by in Situ Dispersion and Their Applications in Surface-Enhanced Raman Scattering (SERS) Films. Industrial & Engineering Chemistry Research, 2016, 55, 6783-6791.	3.7	8
20	Auâ^'–Ov–Ti3+: Active site of MO -Au/TiO2 catalysts for the aerobic oxidation of 5-hydroxymethylfurfural. Green Energy and Environment, 2023, 8, 785-797.	8.7	8
21	Are fermentation products promising feedstock for high-density bio-fuel? domino reactions for upgrading aqueous acetone–butanol–ethanol mixtures. Green Chemistry, 2020, 22, 6137-6147.	9.0	6
22	Mechanistic insights into CoO _{<i>x</i>} –Ag/CeO ₂ catalysts for the aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Catalysis Science and Technology, 2022, 12, 116-123.	4.1	6
23	In situ dispersion of non-aqueous Fe ₃ O ₄ nanocolloids by microdroplet coalescence and their use in the preparation of magnetic composite particles. Soft Matter, 2016, 12, 5180-5187.	2.7	5