
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9538689/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adsorption of Cu(II) and Cd(II) from aqueous solutions by ferromanganese binary oxide–biochar composites. Science of the Total Environment, 2018, 615, 115-122.	3.9	281
2	Synthesis and characterization of a novel MnOx-loaded biochar and its adsorption properties for Cu2+ in aqueous solution. Chemical Engineering Journal, 2014, 242, 36-42.	6.6	277
3	Microplastic particles increase arsenic toxicity to rice seedlings. Environmental Pollution, 2020, 259, 113892.	3.7	242
4	Arsenic removal in aqueous solution by a novel Fe-Mn modified biochar composite: Characterization and mechanism. Ecotoxicology and Environmental Safety, 2017, 144, 514-521.	2.9	190
5	Effect of microplastics and arsenic on nutrients and microorganisms in rice rhizosphere soil. Ecotoxicology and Environmental Safety, 2021, 211, 111899.	2.9	178
6	As(III) adsorption onto different-sized polystyrene microplastic particles and its mechanism. Chemosphere, 2020, 239, 124792.	4.2	177
7	Uptake of microplastics by carrots in presence of As (III): Combined toxic effects. Journal of Hazardous Materials, 2021, 411, 125055.	6.5	165
8	Effect of Different Fertilizer Application on the Soil Fertility of Paddy Soils in Red Soil Region of Southern China. PLoS ONE, 2012, 7, e44504.	1.1	165
9	Mechanisms for cadmium adsorption by magnetic biochar composites in an aqueous solution. Chemosphere, 2020, 246, 125701.	4.2	159
10	Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa L.) cultivar. Chemosphere, 2017, 168, 341-349.	4.2	136
11	Effects of a manganese oxide-modified biochar composite on adsorption of arsenic in red soil. Journal of Environmental Management, 2015, 163, 155-162.	3.8	120
12	Adsorption mechanism of As(III) on polytetrafluoroethylene particles of different size. Environmental Pollution, 2019, 254, 112950.	3.7	92
13	Properties and adsorption mechanism of magnetic biochar modified with molybdenum disulfide for cadmium in aqueous solution. Chemosphere, 2020, 255, 126995.	4.2	84
14	Adsorption Properties of Nano-MnO2–Biochar Composites for Copper in Aqueous Solution. Molecules, 2017, 22, 173.	1.7	81
15	Enhanced As(III) removal from aqueous solution by Fe-Mn-La-impregnated biochar composites. Science of the Total Environment, 2019, 686, 1185-1193.	3.9	81
16	Reduced arsenic accumulation in indica rice (Oryza sativa L.) cultivar with ferromanganese oxide impregnated biochar composites amendments. Environmental Pollution, 2017, 231, 479-486.	3.7	71
17	Effects of Fe-Mn modified biochar composite treatment on the properties of As-polluted paddy soil. Environmental Pollution, 2019, 244, 600-607.	3.7	70
18	Efficient oxidation and adsorption of As(III) and As(V) in water using a Fenton-like reagent, (ferrihydrite)-loaded biochar. Science of the Total Environment, 2020, 715, 136957.	3.9	63

#	Article	IF	CITATIONS
19	A novel mechanism study of microplastic and As co-contamination on indica rice (Oryza sativa L.). Journal of Hazardous Materials, 2022, 421, 126694.	6.5	61
20	Chelator complexes enhanced Amaranthus hypochondriacus L. phytoremediation efficiency in Cd-contaminated soils. Chemosphere, 2019, 237, 124480.	4.2	60
21	Supplementation with ferromanganese oxide–impregnated biochar composite reduces cadmium uptake by indica rice (Oryza sativa L.). Journal of Cleaner Production, 2018, 184, 1052-1059.	4.6	50
22	Fe–Mn–Ce oxide-modified biochar composites as efficient adsorbents for removing As(III) from water: adsorption performance and mechanisms. Environmental Science and Pollution Research, 2019, 26, 17373-17382.	2.7	48
23	Field evaluation of in situ remediation of Cd-contaminated soil using four additives, two foliar fertilisers and two varieties of pakchoi. Journal of Environmental Management, 2013, 124, 17-24.	3.8	45
24	The mechanism of polystyrene microplastics to affect arsenic volatilization in arsenic-contaminated paddy soils. Journal of Hazardous Materials, 2020, 398, 122896.	6.5	45
25	Effects of biodegradable chelator combination on potentially toxic metals leaching efficiency in agricultural soils. Ecotoxicology and Environmental Safety, 2019, 182, 109399.	2.9	42
26	Synthesis and adsorption of Fe Mn La-impregnated biochar composite as an adsorbent for As(III) removal from aqueous solutions. Environmental Pollution, 2019, 247, 128-135.	3.7	42
27	Effects of microplastic on arsenic accumulation in Chlamydomonas reinhardtii in a freshwater environment. Journal of Hazardous Materials, 2021, 405, 124232.	6.5	39
28	Rapid Assays to Predict Nitrogen Mineralization Capacity of Agricultural Soils. Soil Science Society of America Journal, 2017, 81, 979-991.	1.2	34
29	Shortâ€īerm Dynamics of Soil Physical Properties as Affected by Compaction and Tillage in a Silt Loam Soil. Vadose Zone Journal, 2018, 17, 1-13.	1.3	28
30	Removal and Oxidation of Arsenic from Aqueous Solution by Biochar Impregnated with Fe-Mn Oxides. Water, Air, and Soil Pollution, 2019, 230, 1.	1.1	27
31	Environmental controls on the spatial variability of soil water dynamics in a small watershed. Journal of Hydrology, 2017, 551, 47-55.	2.3	24
32	Arsenic volatilization in flooded paddy soil by the addition of Fe-Mn-modified biochar composites. Science of the Total Environment, 2019, 674, 327-335.	3.9	20
33	Mechanism of novel MoS2-modified biochar composites for removal of cadmium (II) from aqueous solutions. Environmental Science and Pollution Research, 2021, 28, 34979-34989.	2.7	20
34	Toxic effect of cadmium adsorbed by different sizes of nano-hydroxyapatite on the growth of rice seedlings. Environmental Toxicology and Pharmacology, 2017, 52, 1-7.	2.0	19
35	Efficient As(III) Removal by Novel MoS ₂ -Impregnated Fe-Oxide–Biochar Composites: Characterization and Mechanisms. ACS Omega, 2020, 5, 13224-13235.	1.6	19
36	Impact of human activities on phosphorus flows on an early eutrophic plateau: A case study in Southwest China. Science of the Total Environment, 2020, 714, 136851.	3.9	19

#	Article	IF	CITATIONS
37	Effects of Fe-Mn-Ce oxide–modified biochar on As accumulation, morphology, and quality of rice (Oryza sativa L.). Environmental Science and Pollution Research, 2020, 27, 18196-18207.	2.7	18
38	Small-Scale Spatial Variability of Plant Nutrients and Soil Organic Matter: An Arable Cropping Case Study. Communications in Soil Science and Plant Analysis, 2016, 47, 2189-2199.	0.6	16
39	Responses of soil hydrolytic enzymes, ammonia-oxidizing bacteria and archaea to nitrogen applications in a temperate grassland in Inner Mongolia. Scientific Reports, 2016, 6, 32791.	1.6	16
40	The overlooked role of diffuse household livestock production in nitrogen pollution at the watershed scale. Journal of Cleaner Production, 2020, 272, 122758.	4.6	16
41	Effects of cultivation history in paddy rice on vertical water flows and related soil properties. Soil and Tillage Research, 2020, 200, 104613.	2.6	16
42	Sawdust and bark to treat nitrogen and faecal bacteria in winter standâ€off pads on a dairy farm. New Zealand Journal of Agricultural Research, 2008, 51, 331-340.	0.9	15
43	Texture effects on carbon stabilisation and storage in New Zealand soils containing predominantly 2 : 1 clays. Soil Research, 2016, 54, 30.	0.6	15
44	The sorbed mechanisms of engineering magnetic biochar composites on arsenic in aqueous solution. Environmental Science and Pollution Research, 2020, 27, 41361-41371.	2.7	15
45	Adsorption of arsenite to polystyrene microplastics in the presence of humus. Environmental Sciences: Processes and Impacts, 2020, 22, 2388-2397.	1.7	15
46	Synthesis and Characterization of Novel Fe-Mn-Ce Ternary Oxide–Biochar Composites as Highly Efficient Adsorbents for As(III) Removal from Aqueous Solutions. Materials, 2018, 11, 2445.	1.3	13
47	Assessing the vulnerability of organic matter to C mineralisation in pasture and cropping soils of New Zealand. Soil Research, 2018, 56, 481.	0.6	13
48	Capacity and mechanism of arsenic adsorption on red soil supplemented with ferromanganese oxide–biochar composites. Environmental Science and Pollution Research, 2018, 25, 20116-20124.	2.7	13
49	Does Particulate Organic Matter Fraction Meet the Criteria for a Model Soil Organic Matter Pool?. Pedosphere, 2019, 29, 195-203.	2.1	13
50	Predicting soil pH changes in response to application of urea and sheep urine. Journal of Environmental Quality, 2020, 49, 1445-1452.	1.0	11
51	Simulation of soil freezing-thawing cycles under typical winter conditions: implications for nitrogen mineralization. Journal of Soils and Sediments, 2020, 20, 143-152.	1.5	10
52	Effect of Fe–Mn–La-modified biochar composites on arsenic volatilization in flooded paddy soil. Environmental Science and Pollution Research, 2021, 28, 49889-49898.	2.7	9
53	Effects of tillage, compaction and nitrogen inputs on crop production and nitrogen losses following simulated forage crop grazing. Agriculture, Ecosystems and Environment, 2020, 289, 106733.	2.5	8
54	The influence of humic and fulvic acids on polytetrafluoroethylene-adsorbed arsenic: a mechanistic study. Environmental Science and Pollution Research, 2021, 28, 64503-64515.	2.7	8

#	Article	IF	CITATIONS
55	Temperature Dependence of Organic Matter Solubility: Influence of Biodegradation during Soilâ€Water Extraction. Soil Science Society of America Journal, 2015, 79, 858-863.	1.2	7
56	Effects of wheat/faba bean intercropping on soil nitrogen transformation processes. Journal of Soils and Sediments, 2019, 19, 1724-1734.	1.5	7
57	Exchangeable cation effects on hot water extractable carbon and nitrogen in agricultural soils. Soil Research, 2020, 58, 356.	0.6	7
58	Nitrogen cycling in soil under grass-clover pasture: Influence of long-term inputs of superphosphate on N mineralisation. Soil Biology and Biochemistry, 2019, 130, 132-140.	4.2	6
59	Distinguishing functional pools of soil organic matter based on solubility in hot water. Soil Research, 2021, 59, 319.	0.6	3
60	Hot water extractable carbon in whole soil and particle-size fractions isolated from soils under contrasting land-use treatments. Soil Research, 2022, 60, 772-781.	0.6	1
61	Sensitivity of organic matter mineralisation to water availability: role of solute diffusivity and the â€ ⁻ Birch effect'. Soil Research, 2023, 61, 9-19.	0.6	1