
Hugo Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9538645/publications.pdf Version: 2024-02-01

Ημέο Suya

#	Article	IF	CITATIONS
1	Catalysts for methanol steam reforming—A review. Applied Catalysis B: Environmental, 2010, 99, 43-57.	20.2	696
2	CuO/ZnO catalysts for methanol steam reforming: The role of the support polarity ratio and surface area. Applied Catalysis B: Environmental, 2015, 174-175, 67-76.	20.2	107
3	Hydrogen production by methanol steam reforming in a membrane reactor: Palladium vs carbon molecular sieve membranes. Journal of Membrane Science, 2009, 339, 160-170.	8.2	71
4	Ultraselective low temperature steam reforming of methanol over PdZn/ZnO catalysts—Influence of induced support defects on catalytic performance. Applied Catalysis B: Environmental, 2014, 154-155, 316-328.	20.2	54
5	Overcoming Stability Problems in Microwave-Assisted Heterogeneous Catalytic Processes Affected by Catalyst Coking. Catalysts, 2019, 9, 867.	3.5	31
6	Low-temperature methanol steam reforming kinetics over a novel CuZrDyAl catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2015, 115, 321-339.	1.7	27
7	Synthesis and characterization of Fe–Ni/ɣ-Al2O3 egg-shell catalyst for H2 generation by ammonia decomposition. Applied Catalysis A: General, 2015, 505, 548-556.	4.3	24
8	Bottomâ€Up Design of a Copper–Ruthenium Nanoparticulate Catalyst for Lowâ€Temperature Ammonia Oxidation. Angewandte Chemie - International Edition, 2017, 56, 8711-8715.	13.8	16
9	Simple hydrothermal synthesis method for tailoring the physicochemical properties of ZnO: morphology, surface area and polarity. RSC Advances, 2014, 4, 31166.	3.6	14
10	Bottomâ€Up Design of a Copper–Ruthenium Nanoparticulate Catalyst for Lowâ€Temperature Ammonia Oxidation. Angewandte Chemie, 2017, 129, 8837-8841.	2.0	9
11	Supercritical flow synthesis of PtPdFe alloyed nanoparticles with enhanced low-temperature activity and thermal stability for propene oxidation under lean exhaust gas conditions. Catalysis Science and Technology, 2019, 9, 6691-6699.	4.1	4
12	Gas solute movement in packed columns—A remote control experiment. Education for Chemical Engineers, 2013, 8, e94-e104.	4.8	3
13	Locating Fe dopants in catalytic PtPd nanoparticles on Î ³ -alumina using X-ray absorption spectroscopy. Catalysis Science and Technology, 2021, 11, 1961-1964.	4.1	0