Michael Koblischka

List of Publications by Citations

Source: https://exaly.com/author-pdf/9538507/michael-koblischka-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

336 papers

4,346 citations

32 h-index 52 g-index

352 ext. papers

4,581 ext. citations

2.1 avg, IF

5.29 L-index

#	Paper	IF	Citations
336	Magneto-optical investigations of superconductors. <i>Superconductor Science and Technology</i> , 1995 , 8, 199-213	3.1	235
335	Analysis of pinning in NdBa2Cu3O7lsuperconductors. <i>Physical Review B</i> , 1998 , 58, 2863-2867	3.3	186
334	Observation of current-discontinuity lines in type-II superconductors. <i>Physical Review B</i> , 1994 , 49, 3443	-3452	125
333	Microstructure and pinning in high- and large- (Nd, Eu, Gd)-123 superconductors prepared by OCMG process. <i>Superconductor Science and Technology</i> , 1998 , 11, 1349-1358	3.1	115
332	Fishtail shape in the magnetic hysteresis loop for superconductors:Interplay between different pinning mechanisms. <i>Physical Review B</i> , 1997 , 55, 3276-3284	3.3	111
331	Pinning mechanisms in bulk high-Tcsuperconductors. <i>Superconductor Science and Technology</i> , 2000 , 13, 738-744	3.1	105
330	Flux motion in thin superconductors with inhomogeneous pinning. <i>Physical Review B</i> , 1994 , 50, 16684-1	67.97	81
329	Perovskite manganites: potential materials for magnetic cooling at or near room temperature. <i>Crystal Engineering</i> , 2002 , 5, 383-389		79
328	Flux pinning in ternary (Nd0.33Eu0.33Gd0.33)Ba2Cu3Oy melt-processed superconductors. <i>Applied Physics Letters</i> , 1998 , 73, 2351-2353	3.4	73
327	EuSe as magneto-optical active coating for use with the high resolution Faraday effect. <i>Cryogenics</i> , 1991 , 31, 811-816	1.8	67
326	Recent advances in magnetic force microscopy. <i>Ultramicroscopy</i> , 2003 , 97, 103-12	3.1	66
325	Determination of flux-density gradients in YBa2Cu3O7th uperconductors using the high-resolution Faraday effect. <i>Physica C: Superconductivity and Its Applications</i> , 1990 , 166, 36-48	1.3	62
324	Enhancement of Jc by 211 particles in ternary (Nd0.33Eu0.33Gd0.33)Ba2Cu3Oy melt-processed superconductors. <i>Applied Physics Letters</i> , 2000 , 76, 91-93	3.4	54
323	Effect of oxygen disorder on superconductivity-induced self-energy effects in impurity-free YBa2Cu3O7\(\text{ISolid State Communications}\), 1991 , 80, 643-647	1.6	51
322	Observation of multiple peaks in the magnetization curves of NdBa2Cu3O7 single crystals. <i>Physical Review B</i> , 1996 , 54, R6893-R6896	3.3	49
321	Observation of flux penetration in YBa2Cu3O7 uperconductors by means of the magneto-optical Faraday effect. <i>Physica C: Superconductivity and Its Applications</i> , 1989 , 159, 117-123	1.3	48
320	Study of flux distributions in high-Tc single crystals and thin films using magneto-optic techniques. <i>Physica C: Superconductivity and Its Applications</i> , 1993 , 209, 259-262	1.3	44

(2006-1999)

319	Central Peak Position in Magnetization Loops of High- Tc Superconductors. <i>Physical Review Letters</i> , 1999 , 82, 2947-2950	7.4	42	
318	Optimization of processing conditions towards high trapped fields in MgB2 bulks. <i>Journal of Alloys and Compounds</i> , 2014 , 608, 102-109	5.7	41	
317	Detailed investigation of the superconducting transition of niobium disks exhibiting the paramagnetic Meissner effect. <i>Physical Review B</i> , 1998 , 58, 14191-14194	3.3	38	
316	Nanoscopic netted structure of compositional modulation in (Sm0.33Eu0.33Gd0.33)Ba2Cu3O7 superconductors. <i>Applied Physics Letters</i> , 2005 , 86, 092505	3.4	35	
315	Influence of Irradiation-Induced Latent Tracks on Local Flux Pinning in Bi-2212 Crystals. <i>Europhysics Letters</i> , 1992 , 19, 323-328	1.6	35	
314	Low magnetic relaxation in a single crystal and a melt processed sample. <i>Superconductor Science and Technology</i> , 1996 , 9, 659-664	3.1	34	
313	Refinement of secondary phase particles for high critical current densities in (Nd,Eu,Gd) B a L u D superconductors. <i>Physica C: Superconductivity and Its Applications</i> , 1999 , 313, 232-240	1.3	34	
312	Optimization of sintering conditions in bulk MgB2 material for improvement of critical current density. <i>Journal of Alloys and Compounds</i> , 2015 , 649, 833-842	5.7	33	
311	Improving the lateral resolution of the MFM technique to the range. <i>Journal of Magnetism and Magnetic Materials</i> , 2004 , 272-276, 2138-2140	2.8	33	
310	Enhancement of critical current densities by heavy-ion irradiation in YBa2Cu3O7- delta observed using the high-resolution Faraday effect. <i>Physical Review B</i> , 1993 , 47, 373-383	3.3	33	
309	Observation of flux penetration in Bi2Sr2CaCu2O8+ delta crystals with irradiation-induced columnar defects. <i>Physical Review B</i> , 1992 , 46, 8496-8504	3.3	33	
308	Improvements of the lateral resolution of the MFM technique. <i>Thin Solid Films</i> , 2003 , 428, 93-97	2.2	32	
307	Interactions of Y2BaCuO5particles and the YBCO matrix within melt-textured YBCO samples studied by means of electron backscatter diffraction. <i>Superconductor Science and Technology</i> , 2005 , 18, S158-S163	3.1	32	
306	Flux penetration in granular YBa2Cu3O7Isamples. <i>Physica C: Superconductivity and Its Applications</i> , 1994 , 219, 205-212	1.3	32	
305	Flux-lines of inversed sign in YBa2Cu3O7Ithin films. <i>Physica C: Superconductivity and Its Applications</i> , 1992 , 196, 373-382	1.3	32	
304	Anomalous position of the maximum in magnetic hysteresis loops measured on (Bi,Pb)2Sr2Ca2Cu3O10/Ag tapes. <i>Applied Physics Letters</i> , 1997 , 70, 514-516	3.4	31	
303	Magneto-optical study of flux penetration in heavy-ion irradiated high-Tc single crystals. <i>Physica C: Superconductivity and Its Applications</i> , 1992 , 203, 203-222	1.3	31	
302	High Frequency Magnetic Force Microscopy-Imaging of Harddisk Write Heads. <i>Japanese Journal of Applied Physics</i> , 2006 , 45, 2238-2241	1.4	29	

301	Application of electron backscatter diffraction to bulk high-Tc superconductors. <i>Superconductor Science and Technology</i> , 2002 , 15, 796-802	3.1	29
300	Evidence of strong flux pinning in melt-processed ternary (NdEu&d)Ba2Cu3Oy superconductors. <i>Applied Physics Letters</i> , 1999 , 75, 253-255	3.4	29
299	Critical-state model with a secondary high-field peak in Jc(B). <i>Physical Review B</i> , 1997 , 56, 11273-11278	3.3	28
298	Flux turbulence in NdBa2Cu3O6+x and underdoped YBa2Cu3O6+x single crystals. <i>Physical Review B</i> , 1999 , 59, R6639-R6642	3.3	28
297	Microstructure and flux distribution in both pure and carbon-nanotube-embedded Bi2Sr2CaCu2O8+\(\mathbb{L} \) uperconductors. <i>Physica C: Superconductivity and Its Applications</i> , 1999 , 311, 172-186	1.3	28
296	Observation of inverse domains in high Tc superconductors. <i>Journal of Applied Physics</i> , 1992 , 72, 1478-1	4285	28
295	Bending of silver-sheathed (Bi,Pb)-2223 tapes investigated by magneto-optical flux visualization. <i>Superconductor Science and Technology</i> , 1997 , 10, 693-701	3.1	27
294	Crystallographic Orientation of Y2Ba4CuMOx (M=Nb, Zr, Ag) Nanoparticles Embedded in Bulk, Melt-Textured YBCO Studied by EBSD. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 2582-2588	3.8	27
293	Comparison of different approaches to modelling the fishtail shape in RE-123 bulk superconductors. <i>Physica C: Superconductivity and Its Applications</i> , 2000 , 338, 235-245	1.3	27
292	Effect of twin planes in the magnetization hysteresis loops of NdBa2Cu3O7 single crystals. <i>Physical Review B</i> , 1998 , 58, R14771-R14774	3.3	27
291	Levitation force from high-Tc superconducting thin-film disks. <i>Physical Review B</i> , 1999 , 60, 9855-9861	3.3	27
290	Sample size dependence of the AC-susceptibility of sintered YBa2Cu3O7lbuperconductors. <i>Physica C: Superconductivity and Its Applications</i> , 1991 , 184, 332-340	1.3	27
289	Flux penetration of melt-processed YBa2Cu3O7II: Direct observation of anisotropy. <i>Journal of Applied Physics</i> , 1993 , 74, 3307-3311	2.5	26
288	Turbulent relaxation in the vortex lattice. <i>Europhysics Letters</i> , 1998 , 41, 419-424	1.6	25
287	Effects of Silver Addition on Critical Current Densities and Mechanical Properties in Bulk MgB2. <i>Advanced Engineering Materials</i> , 2015 , 17, 831-838	3.5	24
286	Observation of nucleation and annihilation of flux-lines with opposite sign in high-Tc superconductors. <i>Physica C: Superconductivity and Its Applications</i> , 1991 , 179, 269-278	1.3	24
285	Microstructural Analysis of Electrochemical Coated Open-Cell Metal Foams by EBSD and Nanoindentation. <i>Advanced Engineering Materials</i> , 2014 , 16, 15-20	3.5	23
284	Pinning forces and scaling in high-Tc superconductors. <i>Physica C: Superconductivity and Its Applications</i> , 1997 , 282-287, 2193-2194	1.3	23

(2016-2003)

283	Characterization of bulk superconductors through EBSD methods. <i>Physica C: Superconductivity and Its Applications</i> , 2003 , 392-396, 545-556	1.3	23	
282	Study of flux behavior in Bi2Sr2CaCu2O8 single crystal in external magnetic fields up to 1 T. <i>Physica C: Superconductivity and Its Applications</i> , 1995 , 249, 339-349	1.3	23	
281	Eishtails In 123-superconductors. <i>Physica C: Superconductivity and Its Applications</i> , 1994 , 235-240, 2833-	283,4	23	
280	Preparation of granular Bi-2212 nanowires by electrospinning. <i>Superconductor Science and Technology</i> , 2017 , 30, 035014	3.1	22	
279	Applications of the electron backscatter diffraction technique to ceramic materials. <i>Phase Transitions</i> , 2013 , 86, 651-660	1.3	22	
278	Temperature-dependent scaling of pinning force data in Bi-based high-Tc superconductors. <i>European Physical Journal B</i> , 2005 , 44, 277-280	1.2	22	
277	Flux penetration into an artificially granular high-Tc superconductor. <i>Physical Review B</i> , 1999 , 59, 12114	I- <u>32</u> 12	0 22	
276	Superconducting transitions of Nd-based 123 superconductors in fields up to 7 T. <i>Superconductor Science and Technology</i> , 1999 , 12, 288-292	3.1	21	
275	Direct observation of flux-creep in high-Tc superconductors using the high-resolution Faraday effect. <i>Physica C: Superconductivity and Its Applications</i> , 1992 , 190, 557-562	1.3	21	
274	Fabrication of bulk YBatut superconductors with high critical current densities through the infiltration-growth process. <i>Cryogenics</i> , 2014 , 63, 129-132	1.8	20	
273	Analysis of flux distributions of superconductors in the presence of structural defects. <i>Superconductor Science and Technology</i> , 1996 , 9, 271-278	3.1	20	
272	Resolving magnetic nanostructures in the 10-nm range using MFM at ambient conditions. <i>Materials Science and Engineering C</i> , 2003 , 23, 747-751	8.3	20	
271	Scaling of pinning forces in NdBa2Cu3O7lbuperconductors. <i>Journal of Applied Physics</i> , 1999 , 85, 3241-32	2 4 65	20	
270	Dynamic contribution to the fishtail effect in a twin-free DyBa2Cu3O7Isingle crystal. <i>Physica C:</i> Superconductivity and Its Applications, 1995 , 250, 265-274	1.3	20	
269	Pinning force scaling analysis of Fe-based high-Tc superconductors. <i>International Journal of Modern Physics B</i> , 2016 , 30, 1630017	1.1	18	
268	Orientation imaging microscopy analysis of bulk, melt-textured YBCO superconductors. <i>Crystal Engineering</i> , 2002 , 5, 265-272		18	
267	Influence of additions and radiation damage on the superconducting properties of sintered YBa2Cu3O7 [gd. <i>Physica C: Superconductivity and Its Applications</i> , 1993 , 211, 263-278	1.3	18	
266	High Magnetic Field Generated by Bulk MgB2 Prepared by Spark Plasma Sintering. <i>IEEE</i> Transactions on Applied Superconductivity, 2016 , 26, 1-5	1.8	17	

265	An electron backscatter diffraction investigation of crystallographic orientations of embedded nanoparticles within melt-textured YBCO high temperature superconductors. <i>Superconductor Science and Technology</i> , 2006 , 19, S562-S566	3.1	17	
264	Embedding of 211 particles in NEG-123 superconductors. <i>Superconductor Science and Technology</i> , 1999 , 12, 555-562	3.1	17	
263	Influence of low magnetic fields on the transport properties of sintered YBa2Cu3O7- deltawith different grain sizes. <i>Superconductor Science and Technology</i> , 1992 , 5, 614-620	3.1	17	
262	Magnetic properties of electrospun non-woven superconducting fabrics. <i>AIP Advances</i> , 2016 , 6, 035115	1.5	17	
261	High critical current densities in bulk MgB2 fabricated using amorphous boron. <i>Physica Status Solidi</i> (A) Applications and Materials Science, 2015 , 212, 2141-2145	1.6	16	
260	. IEEE Transactions on Magnetics, 2014 , 50, 1-4	2	16	
259	Electrodeposition of Nanocrystalline Metals on Open Cell Metal Foams: Improved Mechanical Properties. <i>ECS Transactions</i> , 2009 , 25, 165-172	1	16	
258	Effect of platinum addition on the microstructure and critical current density in (Nd, Eu, Gd)-Ba-Cu-O. <i>Superconductor Science and Technology</i> , 1999 , 12, 105-109	3.1	16	
257	Equivalence of dynamical and conventional magnetic relaxation in high-Tc superconductors. <i>Physica C: Superconductivity and Its Applications</i> , 1996 , 259, 157-167	1.3	16	
256	Flux penetration into YBa2Cu3Ox thin films covering substrate step edges. <i>Applied Physics Letters</i> , 1993 , 62, 768-770	3.4	16	
255	Synthesis and characterization of electrospun superconducting (La,Sr)CuO4nanowires and nanoribbons. <i>Materials Research Express</i> , 2015 , 2, 095022	1.7	15	
254	Evidence for pinning by (Sr,Ca)2CuOy particles in partial-melting processed bulk Bi2Sr2CaCu2O8+ ceramics. <i>Physica C: Superconductivity and Its Applications</i> , 1998 , 300, 207-211	1.3	15	
253	Electron backscatter diffraction study of polycrystalline YBa2Cu3O7Leramics. <i>Physica C: Superconductivity and Its Applications</i> , 2002 , 382, 311-322	1.3	15	
252	Flux pinning sites in melt-processed (Nd0.33Eu0.33Gd0.33)Ba2Cu3Oy superconductors. <i>Physica C:</i> Superconductivity and Its Applications, 2000 , 337, 31-38	1.3	15	
251	(Nd, Eu, Gd)-Ba-Cu-O superconductors with combined addition of CeO2and Pt. <i>Superconductor Science and Technology</i> , 2000 , 13, 693-697	3.1	15	
250	Quantum creep and fast thermally activated vortex dynamics in a Bi2Sr2CaCu2O8 single crystal. <i>Physica C: Superconductivity and Its Applications</i> , 1996 , 257, 271-283	1.3	15	
249	Study of pinning behaviour in YBaCuO using the high-resolution faraday effect. <i>Journal of the Less Common Metals</i> , 1990 , 164-165, 1308-1315		15	
248	EBSD analysis of MgB2bulk superconductors. Superconductor Science and Technology, 2016 , 29, 044007	3.1	14	

Porous high-Tc superconductors and their applications. <i>AIMS Materials Science</i> , 2018 , 5, 1199-1213	1.9	14	
Transport and Magnetic Measurements on Bi2Sr2CaCu2O8 Nanowire Networks Prepared Via Electrospinning. <i>IEEE Transactions on Applied Superconductivity</i> , 2016 , 26, 1-5	1.8	14	
Improvement of the Magnetization of a Superconducting Bulk using an Iron Core. <i>IEEE Transactions on Applied Superconductivity</i> , 2015 , 25, 1-4	1.8	13	
Microstructure and Fluctuation-Induced Conductivity Analysis of Bi2Sr2CaCu2O8+[[Bi-2212) Nanowire Fabrics. <i>Crystals</i> , 2020 , 10, 986	2.3	13	
Giant Enhancement of Magnetostrictive Response in Directionally-Solidified FeGaEr Compounds. <i>Materials</i> , 2018 , 11,	3.5	13	
Analysis of the microstructure of superconducting YBCO foams by means of AFM and EBSD. <i>Journal of Advanced Ceramics</i> , 2014 , 3, 317-325	10.7	13	
Observation of Stray Fields From Hard-Disk Writer Poles up to 2 GHz. <i>IEEE Transactions on Magnetics</i> , 2007 , 43, 2205-2207	2	13	
Stripe and Criss-Cross Patterns in High-TcSuperconductors Revealed by Atomic Force Microscopy and Scanning Tunnelling Microscopy. <i>Japanese Journal of Applied Physics</i> , 2006 , 45, 2259-2263	1.4	13	
Record critical current densities in IG processed bulk YBa2Cu3Oy fabricated using ball-milled Y2Ba1Cu1O5 phase. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2016 , 213, 443-449	1.6	13	
Microstructure, critical current density and trapped field experiments in IG-processed Y-123. Superconductor Science and Technology, 2016 , 29, 054003	3.1	13	
Relaxation and pinning in spark-plasma sintered MgB2superconductor. <i>Superconductor Science and Technology</i> , 2016 , 29, 025006	3.1	12	
Topochemical growth of textured polycrystalline barium hexaferrite from oriented antiferromagnetic alpha-FeOOH nanorods. <i>Nanotechnology</i> , 2009 , 20, 445606	3.4	12	
Crystallographic Orientation Analyses of Magnetite Thin Films Using Electron Backscatter Diffraction (EBSD). <i>IEEE Transactions on Magnetics</i> , 2006 , 42, 2873-2875	2	12	
Field-Cooled Flux Distributions as Tool to Analyze Pinning Properties. <i>Japanese Journal of Applied Physics</i> , 1998 , 37, L1227-L1230	1.4	12	
Engineering of pinning sites in melt-processed (Nd0.33Eu0.33Gd0.33)Ba2Cu3Oy superconductors. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 1999 , 65, 58-65	3.1	12	
Angular scaling of critical current measurements on laser-ablated YBa2Cu3O7Lthin films. <i>Physica C: Superconductivity and Its Applications</i> , 1994 , 235-240, 3053-3054	1.3	12	
Analysis of magnetization loops of electrospun nonwoven superconducting fabrics. <i>Physical Review Materials</i> , 2017 , 1,	3.2	12	
Superconducting YBCO Foams as Trapped Field Magnets. <i>Materials</i> , 2019 , 12,	3.5	11	
	Transport and Magnetic Measurements on Bi25r2CaCu2O8 Nanowire Networks Prepared Via Electrospinning. <i>IEEE Transactions on Applied Superconductivity</i> , 2016, 26, 1-5 Improvement of the Magnetization of a Superconducting Bulk using an Iron Core. <i>IEEE Transactions on Applied Superconductivity</i> , 2015, 25, 1-4 Microstructure and Fluctuation-Induced Conductivity Analysis of Bi25r2CaCu2O8+IBi-2212) Nanowire Fabrics. <i>Crystals</i> , 2020, 10, 986 Giant Enhancement of Magnetostrictive Response in Directionally-Solidified FeGaEr Compounds. <i>Materials</i> , 2018, 11, Analysis of the microstructure of superconducting YBCO foams by means of AFM and EBSD. <i>Journal of Advanced Ceramics</i> , 2014, 3, 317-325 Observation of Stray Fields From Hard-Disk Writer Poles up to 2 GHz. <i>IEEE Transactions on Magnetics</i> , 2007, 43, 2205-2207 Stripe and Criss-Cross Patterns in High-TcSuperconductors Revealed by Atomic Force Microscopy and Scanning Tunnelling Microscopy. <i>Japaneses Journal of Applied Physics</i> , 2006, 45, 2259-2263 Record critical current densities in IG processed bulk YBa2Cu3Oy fabricated using ball-miled Y2Ba1Cu1OS phase. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2016, 213, 443-449 Microstructure, critical current density and trapped field experiments in IG-processed Y-123. <i>Superconductor Science and Technology</i> , 2016, 29, 054003 Relaxation and pinning in spark-plasma sintered MgB2superconductor. <i>Superconductor Science and Technology</i> , 2016, 29, 054003 Relaxation and pinning in spark-plasma sintered MgB2superconductor. <i>Superconductor Science and Technology</i> , 2016, 29, 054003 Fegianesing of pinning in spark-plasma sintered MgB2superconductor. <i>Superconductor Science and Technology</i> , 2016, 29, 025006 Topochemical growth of textured polycrystalline barium hexaferrite from oriented antiferromagnetic alpha-FeOOH nanorods. <i>Nanotechnology</i> , 2009, 20, 445606 Crystallographic Orientation Analyses of Magnetite Thin Films Using Electron Backscatter Diffraction (EBSD). <i>IEEE Transactions on Magnetics</i> , 2006,	Iransport and Magnetic Measurements on Bi2Sr2CaCu2O8 Nanowire Networks Prepared Via Electrospinning. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5 Improvement of the Magnetization of a Superconducting Bulk using an Iron Core. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-4 Microstructure and Fluctuation-Induced Conductivity Analysis of Bi2Sr2CaCu2O8+I[Bi-2212) Nanowire Fabrics. Crystals, 2020, 10, 986 Giant Enhancement of Magnetostrictive Response in Directionally-Solidified FeGaEr Compounds. Materials, 2018, 11, Analysis of the microstructure of superconducting YBCO foams by means of AFM and EBSD. Journal of Advanced Ceromics, 2014, 3, 317-325 Observation of Stray Fields From Hard-Disk Writer Poles up to 2 GHz. IEEE Transactions on Magnetics, 2007, 43, 2205-2207 Stripe and Criss-Cross Patterns in High-TcSuperconductors Revealed by Atomic Force Microscopy and Scanning Tunnelling Microscopy. Japanese Journal of Applied Physics, 2006, 45, 2259-2263 Record critical current densities in IG processed bulk YBa2Cu3Oy fabricated using ball-milled Y2Ba1Cu1O5 phase. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 443-449 Microstructure, critical current density and trapped field experiments in IG-processed Y-123. Superconductor Science and Technology, 2016, 29, 025006 Microstructure, critical current density and trapped field experiments in IG-processed Y-123. Superconductor Science and Technology, 2016, 29, 025006 Topochemical growth of textured polycrystalline barium hexaferrite from oriented antiferromagnetic alpha-FeOOH nanorods. Nanotechnology, 2009, 20, 445606 14 Topochemical growth of textured polycrystalline barium hexaferrite from oriented antiferromagnetic alpha-FeOOH nanorods. Nanotechnology, 2009, 20, 445606 14 Topochemical growth of textured polycrystalline barium hexaferrite from oriented antiferromagnetic alpha-FeOOH nanorods. Nanotechnology, 2009, 20, 445606 14 Topochemical growth of textured polycrystalline for Advanced Technology, 1	Improvement of the Magnetization of a Superconductivity, 2016, 26, 1-5 Improvement of the Magnetization of a Superconductivity, 2016, 26, 1-5 Improvement of the Magnetization of a Superconductivity analysis of Bi2Sr2CaCu2O8+[IBi-2212) Microstructure and Fluctuation-Induced Conductivity Analysis of Bi2Sr2CaCu2O8+[IBi-2212) Microstructure and Fluctuation-Induced Conductivity Analysis of Bi2Sr2CaCu2O8+[IBi-2212) Microstructure and Fluctuation-Induced Conductivity Analysis of Bi2Sr2CaCu2O8+[IBi-2212) Manowire Fabrics. Crystals, 2020, 10, 986 Giant Enhancement of Magnetostrictive Response in Directionally-Solidified FeGaEr Compounds. Materials, 2018, 11, Analysis of the microstructure of superconducting YBCO foams by means of AFM and EBSO. 107 13 Disparation of Stray Fields From Hard-Disk Writer Poles up to 2 GHz. IEEE Transactions on Magnetics, 2007, 43, 2205-2207 Stripe and Criss-Cross Patterns in High-TcSuperconductors Revealed by Atomic Force Microscopy and Scanning Tunnelling Microscopy. Japanese Journal of Applied Physics, 2006, 45, 2259-2263 Record critical current densities in IG processed bulk YBa2Cu3Oy fabricated using balt-milled YZBa1Cu1O5 phase. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 443-449 Microstructure, critical current density and trapped field experiments in IG-processed Y-123. 31 33 Relaxation and pinning in spark-plasma sintered MgB2superconductor. Superconductor Science and Technology, 2016, 29, 025006 Topochemical growth of textured polycrystalline barium hexaferrite from oriented antiferromagnetic alpha-FeOOH handrords. Nanotechnology, 2009, 20, 445606 Topochemical growth of textured polycrystalline barium hexaferrite from oriented antiferromagnetic alpha-FeOOH handrords. Nanotechnology, 2009, 20, 43-606 Topochemical growth of textured polycrystalline barium hexaferrite from oriented antiferromagnetic alpha-FeOOH handrords. Nanotechnology, 2009, 20, 43-606 Topochemical growth of textured polycrystalline barium hexaferrite from oriented antife

229	Human dental enamel: A natural nanotechnology masterpiece investigated by TEM and t-EBSD. <i>Nano Research</i> , 2018 , 11, 3911-3921	10	11
228	Comparative study of grain orientation in melt-textured HTSC with different additions. <i>Physica C:</i> Superconductivity and Its Applications, 2005 , 426-431, 618-624	1.3	11
227	Interplay of YBCO and Embedded 211 Particles in Melt-Textured YBCO Superconductors. <i>Journal of Superconductivity and Novel Magnetism</i> , 2005 , 18, 469-474		11
226	Flux patterns of monofilamentary tapes at various temperatures. <i>Superconductor Science and Technology</i> , 1999 , 12, 113-119	3.1	11
225	Surface pinning in niobium and a high-Tc superconductor. <i>Physica C: Superconductivity and Its Applications</i> , 1996 , 269, 71-75	1.3	11
224	Magnetic force microscopy applied in magnetic data storage technology. <i>Applied Physics A: Materials Science and Processing</i> , 2003 , 76, 879-884	2.6	10
223	Study of flux entry and exit into Bi-2223 multifilamentary tapes. <i>Superconductor Science and Technology</i> , 1998 , 11, 479-484	3.1	10
222	Dimensionality and superconducting parameters of YBa2Cu3O7d/(WO3 NPs)x composites deduced from excess conductivity analysis. <i>Materials Chemistry and Physics</i> , 2020 , 243, 122665	4.4	10
221	Critical current densities in Ag-added bulk MgB2. <i>Physica C: Superconductivity and Its Applications</i> , 2015 , 518, 36-39	1.3	9
220	Improved critical current densities in bulk FeSe superconductor using ball milled powders and high temperature sintering. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2016 , 213, 3214-3220	1.6	9
219	High-frequency properties of stray fields emanating from hard disk writer poles up to 2 GHz. Journal of Magnetism and Magnetic Materials, 2010 , 322, 1694-1696	2.8	9
218	Preparation of ferrite-coated MFM cantilevers. <i>Journal of Magnetism and Magnetic Materials</i> , 2007 , 316, e666-e669	2.8	9
217	Analysis of twin boundaries using the electron backscatter diffraction (EBSD) technique. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2008 , 151, 60-64	3.1	9
216	Embedded Y2Ba4CuNbOx nanoparticles in melt-textured YBCO studied by means of EBSD. <i>Physica C: Superconductivity and Its Applications</i> , 2006 , 445-448, 379-381	1.3	9
215	Characterization of pinning in (Y, Nd)Ba2Cu3O7[melt-textured superconductors. <i>Physica C: Superconductivity and Its Applications</i> , 2004 , 415, 40-50	1.3	9
214	Nanoscale flux pinning sites in high-Tc superconductors. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2005 , 2, 1720-1725		9
213	Magneto-optical and microstructural investigations on KClO3-doped YBCO HTSC. <i>Physica C:</i> Superconductivity and Its Applications, 2001 , 357-360, 201-204	1.3	9
212	Study of superconducting properties of OCMG processed (Nd, Eu, Gd) B atuth with Pr doping. <i>Physica C: Superconductivity and Its Applications</i> , 1999 , 314, 277-284	1.3	9

211	Current-induced domain movement in high-Tc single crystals. <i>Physica Status Solidi A</i> , 1992 , 130, 429-447		9
210	Novel method of tuning the size of Y2BaCuO5 particles and their influence on the physical properties of bulk YBa2Cu3O7-Buperconductor. <i>Applied Physics Express</i> , 2019 , 12, 063002	2.4	8
209	On the dynamics of vortices in BSCCO(2223)/Ag tape. <i>Physica C: Superconductivity and Its Applications</i> , 1998 , 308, 21-24	1.3	8
208	Texture analysis of monofilamentary, Ag-sheathed (Pb,Bi)2Sr2Ca2Cu3Ox tapes by electron backscatter diffraction (EBSD). <i>Physica C: Superconductivity and Its Applications</i> , 2008 , 468, 174-182	1.3	8
207	Nanostripe structures in SmBa2Cu3Oxsuperconductors. <i>Superconductor Science and Technology</i> , 2007 , 20, 681-686	3.1	8
206	Misorientations in [001] magnetite thin films studied by electron backscatter diffraction and magnetic force microscopy. <i>Journal of Applied Physics</i> , 2007 , 101, 09M507	2.5	8
205	Optimization of the HF-MFM technique. <i>Journal of Physics: Conference Series</i> , 2007 , 61, 591-595	0.3	8
204	Flux distributions in jointed tapes. Superconductor Science and Technology, 1998, 11, 573-576	3.1	8
203	Formation of the low-field peak in magnetization loops of high-Tc superconductors. <i>Physica C: Superconductivity and Its Applications</i> , 1999 , 320, 101-114	1.3	8
202	Variation of grain sizes in sintered YBa2Cu3O7Iby different sintering conditions. <i>Materials Letters</i> , 1992 , 14, 189-192	3.3	8
201	Relation between Crystal Structure and Transition Temperature of Superconducting Metals and Alloys. <i>Metals</i> , 2020 , 10, 158	2.3	8
200	Submicron size Gd2BaCuO5particles as source for large critical current densities in (Nd0.33Eu0.33Gd0.33)Ba2Cu3Oy. <i>EPJ Applied Physics</i> , 1999 , 7, 99-102	1.1	8
199	Magnetic phases in superconducting, polycrystalline bulk FeSe samples. AIP Advances, 2021, 11, 015230	1.5	8
198	TEM and electron backscatter diffraction analysis (EBSD) on superconducting nanowires. <i>Journal of Physics: Conference Series</i> , 2018 , 1054, 012005	0.3	8
197	Advanced microstructural analysis of ferrite materials by means of electron backscatter diffraction (EBSD). <i>Journal of Magnetism and Magnetic Materials</i> , 2010 , 322, 1178-1181	2.8	7
196	Excitation of a bosonic mode by electron tunneling into a cuprate superconductor NdBa2Cu3O7II <i>Physical Review B</i> , 2008 , 78,	3.3	7
195	Recent progress on compositional nanostripes of REBa2Cu3O7(RE = Sm,Eu,Gd) superconductors. Superconductor Science and Technology, 2006 , 19, S580-S584	3.1	7
194	Nanostripes in (Nd0.33Eu0.28Gd0.38)Ba2Cu3Ox superconductors. <i>Applied Physics Letters</i> , 2007 , 91, 082	590,8	7

193	Effects of subgrains on critical current properties in melt-processed REBatut bulk superconductors. <i>Superconductor Science and Technology</i> , 2004 , 17, S61-S65	3.1	7
192	Subgrain structures and superconductivity in REBatuth bulk superconductors. <i>Physica C: Superconductivity and Its Applications</i> , 2003 , 386, 225-230	1.3	7
191	. IEEE Transactions on Applied Superconductivity, 2001, 11, 3242-3245	1.8	7
190	Flux pinning in melt-processed ternary (NdHuttd)Ba2Cu3Oy superconductors with Gd2BaCuO5 addition. <i>Journal of Applied Physics</i> , 1999 , 86, 5705-5711	2.5	7
189	Highly Porous Superconductors: Synthesis, Research, and Prospects. <i>Physics of Metals and Metallography</i> , 2020 , 121, 936-948	1.2	7
188	Excess Conductivity Analysis of Polycrystalline FeSe Samples with the Addition of Ag. <i>Materials</i> , 2020 , 13,	3.5	7
187	Microstructural and magnetic analysis of a superconducting foam and comparison with IG-processed bulk samples. <i>Journal of Physics: Conference Series</i> , 2016 , 695, 012002	0.3	7
186	. IEEE Transactions on Applied Superconductivity, 2019 , 29, 1-5	1.8	6
185	Analysis of the microstructure of bulk MgB using TEM, EBSD and t-EBSD. <i>Journal of Microscopy</i> , 2019 , 274, 123-131	1.9	6
184	Electric transport measurements on bulk, polycrystalline MgB2samples prepared at various reaction temperatures. <i>Journal of Physics: Conference Series</i> , 2016 , 695, 012004	0.3	6
183	Pinning force scaling and its analysis in the LRE-123 ternary compounds. <i>Physica C:</i> Superconductivity and Its Applications, 2014 , 496, 23-27	1.3	6
182	Evidence for a directed I c -type flux pinning by means of nanostripes in (Sm 0.33 Eu 0.33 Gd 0.33)Ba 2 Cu 3 O y high-T c superconductors. <i>Europhysics Letters</i> , 2010 , 89, 47002	1.6	6
181	Observation of nanostripes and -clusters in (Nd,EuGd)Ba2Cu3Ox superconductors. <i>Physica C: Superconductivity and Its Applications</i> , 2009 , 469, 168-176	1.3	6
180	Study of the magnetic flux density distribution of nickel coated aluminum foams. <i>Journal of Physics: Conference Series</i> , 2010 , 200, 082011	0.3	6
179	Magneto-optical observation of dynamic relaxation in thin films. <i>Journal of Physics Condensed Matter</i> , 1997 , 9, 10909-10918	1.8	6
178	Increased flux pinning in both pure and carbon-nanotube-embedded Bi-2212 superconductors. <i>Physica C: Superconductivity and Its Applications</i> , 1997 , 282-287, 2279-2280	1.3	6
177	EBSD analysis of melt-textured YBCO with embedded Ag-2411 nanoparticles. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2008 , 151, 65-68	3.1	6
176	A study of grain orientation of Alkali doped polycrystalline YBCO ceramics using an EBSD technique. <i>Crystal Engineering</i> , 2002 , 5, 411-418		6

175	Texture analysis of melt-textured YBCO superconductors. <i>Physica C: Superconductivity and Its Applications</i> , 2003 , 392-396, 601-606	1.3	6
174	Orientations of Y2BaCuO5 and YBCO within melt-textured and directional solidified samples studied by EBSD. <i>Physica C: Superconductivity and Its Applications</i> , 2003 , 392-396, 589-595	1.3	6
173	The effect of intermediate pressure in the OPIT fabrication on the current paths and the current carrying capability of Bi-2223 tapes. <i>IEEE Transactions on Applied Superconductivity</i> , 2001 , 11, 3740-3743	1.8	6
172	Field-cooled magnetization measurements of Nd-123 bulk superconductors. <i>Superconductor Science and Technology</i> , 2000 , 13, 745-748	3.1	6
171	Magnetic and magneto-optic characterization of the ternary compounds and. <i>Superconductor Science and Technology</i> , 1998 , 11, 1283-1291	3.1	6
170	Flux patterns of multifilamentary Ag-sheathed (Pb,Bi)2Sr2Ca2Cu3O10+Lapes. <i>Journal of Applied Physics</i> , 1998 , 83, 6798-6800	2.5	6
169	Improvement of Critical Current Densities in Bulk Superconductors of the 123-Type. <i>Physica Status Solidi A</i> , 1999 , 171, R7-R8		6
168	Defects in YBa2Cu3O7Ithin films studied by magneto-optics. <i>Physica C: Superconductivity and Its Applications</i> , 1996 , 259, 135-141	1.3	6
167	Large fishtail effect in DyBa2Cu3O7Isingle crystals containing columnar defects. <i>Physica C: Superconductivity and Its Applications</i> , 1994 , 235-240, 2839-2840	1.3	6
166	Influence of Microstructure on Superconducting Properties of YBa2Cu3O7lbtudied by Means of AC-Susceptibility. <i>Physica Status Solidi A</i> , 1992 , 129, 509-517		6
165	Magnetoresistance and structural characterization of electrospun La1 \mathbb{B} r MnO3 nanowire network fabrics with x = 0.2. <i>Solid State Communications</i> , 2019 , 290, 37-41	1.6	6
164	Electrotransport and magnetic measurements on bulk FeSe superconductors. <i>Journal of Physics:</i> Conference Series, 2018 , 1054, 012018	0.3	6
163	Enhanced Critical Current Density in Bulk MgB2. <i>IEEE Transactions on Applied Superconductivity</i> , 2018 , 28, 1-5	1.8	5
162	Recent developments in melt processed Gd-123 and MgB2 materials at RTRI. <i>Physica C:</i> Superconductivity and Its Applications, 2014 , 496, 5-10	1.3	5
161	EBSD analysis of the microtexture of Ba-hexaferrite samples. <i>Journal of Physics: Conference Series</i> , 2010 , 200, 082014	0.3	5
160	Flux pinning and grain coupling studied by magneto-optical visualization in Bi2Sr2CaCu2O8+ ceramics. <i>Physica C: Superconductivity and Its Applications</i> , 1997 , 282-287, 1469-1470	1.3	5
159	Direct observation of nanometer-scale pinning sites in (Nd 0.33 Eu 0.20 Gd 0.47)Ba 2 Cu 3 O 7- single crystals. <i>Europhysics Letters</i> , 2008 , 83, 37005	1.6	5
158	Optimization of high-frequency magnetic force microscopy by ferrite-coated cantilevers. <i>Journal of Magnetism and Magnetic Materials</i> , 2007 , 316, 206-209	2.8	5

157	Electron backscatter diffraction analysis applied to [0 0 1] magnetite thin films grown on MgO substrates. <i>Journal of Magnetism and Magnetic Materials</i> , 2007 , 316, e663-e665	2.8	5
156	Preparation of thin ferrite films on silicon using RF sputtering. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2008 , 205, 1783-1786	1.6	5
155	Pinning performance of (Nd,Eu,Gd)-123 superconductors: Comparison of melt-textured pellet and single crystal. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2008 , 151, 25-30	3.1	5
154	Patterning of permalloy thin films by means of electron-beam lithography and focused ion-beam milling. <i>Superlattices and Microstructures</i> , 2008 , 44, 699-704	2.8	5
153	Grain orientations and distribution of Y2Ba4CuUOxphase in melt-textured YBCO with addition of depleted uranium oxide studied by EBSD. <i>Superconductor Science and Technology</i> , 2006 , 19, S567-S571	3.1	5
152	Preparation of ferrite-coated magnetic force microscopy cantilevers. <i>Journal of Vacuum Science & Technology B</i> , 2007 , 25, 1679		5
151	Analysis of high-Tc superconductor compounds on the nanometre scale. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2005 , 2, 1726-1731		5
150	Second Step in the Field-Cooled Magnetization of Bi-2212 Single Crystals. <i>Physica Status Solidi (B):</i> Basic Research, 2000 , 218, r3-r5	1.3	5
149	Magneto-optical investigations of multifilamentary Bi-2223 tapes. <i>Physica C: Superconductivity and Its Applications</i> , 2000 , 341-348, 2583-2584	1.3	5
148	Superconducting transitions of YBa2Cu3Oxsuperconductors in high fields. <i>Superconductor Science and Technology</i> , 2000 , 13, 805-806	3.1	5
147	Review on the Use of Superconducting Bulks for Magnetic Screening in Electrical Machines for Aircraft Applications. <i>Materials</i> , 2021 , 14,	3.5	5
146	Flux Pinning Analysis of Superconducting YBCO Foam Struts. <i>IEEE Transactions on Applied Superconductivity</i> , 2019 , 29, 1-5	1.8	5
145	Comparison of Temperature and Field Dependencies of the Critical Current Densities of Bulk YBCO, MgB\$_2\$, and Iron-Based Superconductors. <i>IEEE Transactions on Applied Superconductivity</i> , 2019 , 29, 1-5	1.8	4
144	On the origin of the sharp, low-field pinning force peaks in MgB2 superconductors. <i>AIP Advances</i> , 2020 , 10, 015035	1.5	4
143	Production of Sharp-Edged and Surface-Damaged YBaCuO by Ultrasound: Significant Improvement of Superconducting Performance of Infiltration Growth-Processed YBaCuO Bulk Superconductors. <i>ACS Omega</i> , 2020 , 5, 6250-6259	3.9	4
142	Improvement in the Performance of Bulk MgB2 Material through Optimization of Sintering Process. <i>Physics Procedia</i> , 2015 , 65, 73-76		4
141	Theoretical Description of the High-Frequency Magnetic Force Microscopy Technique. <i>IEEE Transactions on Magnetics</i> , 2009 , 45, 3228-3232	2	4
140	Analysis of Grain Shape and Orientation in BaFe\$_{12}\$O\$_{19}\$-Ferrites Using Electron Backscatter Diffraction (EBSD). <i>IEEE Transactions on Magnetics</i> , 2009 , 45, 4219-4222	2	4

139	Microstructure and magnetic properties of BaTiO3(Ni,Zn)Fe2O4 multiferroics. <i>Thin Solid Films</i> , 2010 , 518, 4730-4733	2.2	4	
138	Relaxation and scaling of magnetization around the fishtail minimum in single crystal with columnar tracks. <i>Superconductor Science and Technology</i> , 1997 , 10, 484-491	3.1	4	
137	Modelling the Anomalous Low Field Peak Position in Bi-2223 Tapes. <i>Physica Status Solidi A</i> , 1998 , 167, R1-R2		4	
136	T c -dependence of energy gap and asymmetry of coherence peaks in NdBa 2 Cu 3 O 7-Il superconductors. <i>Europhysics Letters</i> , 2008 , 84, 47004	1.6	4	
135	Microtexture of magnetite thin films of (001) and (111) orientations on MgO substrates studied by electron-backscatter diffraction. <i>Journal of Applied Physics</i> , 2008 , 103, 07E505	2.5	4	
134	Advanced cantilevers for magnetic force microscopy and high frequency magnetic force microscopy. <i>Scanning</i> , 2008 , 30, 27-34	1.6	4	
133	Nanostripes in SmBa2Cu3O7Isingle crystals: Origin and peak effect. <i>Physica C: Superconductivity and Its Applications</i> , 2005 , 426-431, 441-445	1.3	4	
132	Homogeneous distribution of 211 secondary-phase particles in single-grain melt-grown (Nd,Eu,Gd)Ba2Cu3O7 bulk. <i>Physica C: Superconductivity and Its Applications</i> , 2000 , 339, 143-147	1.3	4	
131	Influence of KClO3 Addition on the Magnetic Properties and Microstructural Morphology of Y(10.2x)Ba(20.2x)KxCu3Oy (x = 0 0.40) Polycrystalline HTSC. <i>Journal of Low Temperature Physics</i> , 1999 , 117, 939-943	1.3	4	
130	Instability of the Critical State in NdBa2Cu3O7lbingle Crystals. <i>Journal of Low Temperature Physics</i> , 1999 , 117, 1483-1487	1.3	4	
129	Shape of magnetic hysteresis loop measured on superconducting Bi-2223/Ag tapes. <i>European Physical Journal D</i> , 1996 , 46, 1603-1604		4	
128	Flux visualization in high-Tc superconductors using a high-resolution magneto-optical microscope. <i>Physica C: Superconductivity and Its Applications</i> , 1994 , 235-240, 2699-2700	1.3	4	
127	Commercial alumina templates as base to fabricate 123-type high-Tc superconductor nanowires. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2016 , 213, 1069-1076	1.6	4	
126	Comparison of human and bovine dental enamel by TEM and t-EBSD investigations. <i>IOP Conference Series: Materials Science and Engineering</i> , 2019 , 625, 012006	0.4	4	
125	Transmission EBSD (t-EBSD) as Tool to Investigate Nanostructures in Superconductors. <i>Journal of Superconductivity and Novel Magnetism</i> , 2019 , 32, 3155-3163	1.5	3	
124	2-D Numerical Modeling of a Bulk HTS Magnetization Based on H Formulation Coupled With Electrical Circuit. <i>IEEE Transactions on Applied Superconductivity</i> , 2019 , 29, 1-5	1.8	3	
123	. IEEE Transactions on Applied Superconductivity, 2018 , 28, 1-5	1.8	3	
122	Pinning force scaling of electrospun Bi-2212 nanowire networks. <i>Solid State Communications</i> , 2017 , 264, 16-18	1.6	3	

121	Measurement of levitation forces of high-Tcsuperconductors. <i>Physics Education</i> , 2010 , 45, 42-49	0.8	3
120	Different types of ferrite thin films as magnetic cantilever coating for magnetic force microscopy. Journal of Magnetism and Magnetic Materials, 2010 , 322, 1697-1699	2.8	3
119	Characterization of electroplated, thick permalloy films. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2008 , 205, 1809-1812	1.6	3
118	Investigation of melt-textured superconductors on the nanoscale. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2008 , 151, 47-52	3.1	3
117	Ion damage during preparation of nanostructures in magnetite by means of focused ion-beam (FIB) milling. <i>Superlattices and Microstructures</i> , 2008 , 44, 468-475	2.8	3
116	Apparent Non-Scaling of Pinning Force Data in Bi-Based High-Tc Superconductors. <i>Physica Status Solidi A</i> , 2002 , 189, r1-r3		3
115	Texture Analysis of Melt-Textured and Polycrystalline YBa2Cu3O y Using EBSD. <i>Journal of Low Temperature Physics</i> , 2003 , 131, 653-657	1.3	3
114	Orientation of embedded Y2BaCuO5 particles within the YBa2Cu3Ox matrix in melt-textured YBCO superconductors. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2005 , 2, 1714-1719		3
113	Magnetic Properties of Superconducting and Nonsuperconducting (Nd0.33Eu0.33Gd0.33)Ba2Cu3Oy. <i>Journal of Superconductivity and Novel Magnetism</i> , 2001 , 14, 415-419		3
112	The low-field peak in magnetization loops of uniform and granular superconductors in perpendicular magnetic fields. <i>Physica C: Superconductivity and Its Applications</i> , 2000 , 341-348, 1443-144	1 4 .3	3
111	Magnetic properties of KClO3-doped Y(1-0.2x)Ba(2-0.2x)KxCu3Oy, (x= 0-0.40) HTSC. <i>Superconductor Science and Technology</i> , 2000 , 13, 807-810	3.1	3
110	Correlation of magnetic and magneto-optical properties with microstructure analysis in melt-textured (Nd0.33Sm0.33Gd0.33)Ba2Cu3Oy. <i>Physica C: Superconductivity and Its Applications</i> , 1999 , 319, 169-180	1.3	3
109	Instability of the Critical State in NdBa2Cu3O7Isingle Crystals. <i>Physica Status Solidi (B): Basic Research</i> , 1999 , 215, R11-R12	1.3	3
108	How is a fully penetrated state formed in an anisotropic superconductor?. <i>Journal of Superconductivity and Novel Magnetism</i> , 1996 , 9, 143-150		3
107	Geometry dependence of intergranular currents in sintered YBa2Cu3O7\(\textit{IPhysica C:}\) Superconductivity and Its Applications, 1992 , 202, 249-255	1.3	3
106	Properties of La1.85Sr0.15CuO4/La0.7Sr0.3MnO3 hybride nanowire networks prepared by electrospinning. <i>Journal of Magnetism and Magnetic Materials</i> , 2019 , 475, 741-745	2.8	3
105	Fabrication of Superconducting Nanowires Using the Template Method. <i>Nanomaterials</i> , 2021 , 11,	5.4	3
104	EBSD Characterization of Specific Microstructures in RE-BCO Superconductors. <i>IEEE Transactions on Applied Superconductivity</i> , 2019 , 29, 1-4	1.8	2

103	Reproducibility of small GeCHO-added MgB bulks fabricated by ex situ Spark Plasma Sintering used in compound bulk magnets with a trapped magnetic field above 5 Tr. Scientific Reports, 2020, 10, 10538	4.9	2
102	Flux creep after field trapping in YBa2Cu3O x foams. <i>Superconductor Science and Technology</i> , 2020 , 33, 044008	3.1	2
101	Secondary phase particles in bulk, infiltration-growth processed YBCO investigated by transmission Kikuchi diffraction and TEM. <i>Superconductor Science and Technology</i> , 2020 , 33, 034010	3.1	2
100	Microstructure and Flux Pinning of Reacted-and-Pressed, Polycrystalline BaKFeAs Powders. <i>Materials</i> , 2019 , 12,	3.5	2
99	Position-dependent analysis of nanostripes in bulk light-rare-earth superconductors. <i>Physica C:</i> Superconductivity and Its Applications, 2014 , 496, 35-38	1.3	2
98	High Critical Currents in Single Grain YBa2Cu3Oy Bulk Superconductors Produced by Infiltration-Growth. <i>Advances in Science and Technology</i> , 2014 , 95, 181-185	0.1	2
97	High-frequency MFM characterization of magnetic recording writer poles. <i>Applied Physics A: Materials Science and Processing</i> , 2009 , 94, 235-240	2.6	2
96	EBSD analysis of electroplated magnetite thin films. <i>Journal of Magnetism and Magnetic Materials</i> , 2010 , 322, 1235-1238	2.8	2
95	Enhancement of the fishtail effect in the DyBa2Cu3O7-Bingle crystal at magnetic field tilted from thec-axis. <i>Superlattices and Microstructures</i> , 1997 , 21, 335-338	2.8	2
94	Magnetic measurements in NdBa2Cu3O7Isingle crystals: magnetization, flux pinning and creep. <i>Applied Superconductivity</i> , 1998 , 6, 225-234		2
93	EBSD analysis of the growth of (001) magnetite thin films on MgO substrates. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2007 , 144, 64-68	3.1	2
92	Nanostripes in GdBa2Cu3Ox high-Tc superconductors. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2008 , 151, 74-78	3.1	2
91	Observation of an inelastic scattering mode by scanning tunneling spectroscopy on NdBa2Cu3Ox. Journal of Physics: Conference Series, 2007, 61, 234-238	0.3	2
90	Search for the optimally suited cantilever type for high-frequency MFM. <i>Journal of Physics: Conference Series</i> , 2007 , 61, 596-600	0.3	2
89	Nanostripes in (Nd,Eu,Gd)Ba2Cu3Ox (NEG) Single Crystals. <i>Microscopy and Microanalysis</i> , 2007 , 13, 356-	3 57 5	2
88	EBSD characterisation of Y2Ba4CuUOxphase in melttextured YBCO with addition of depleted uranium oxide. <i>Journal of Physics: Conference Series</i> , 2006 , 43, 438-441	0.3	2
87	Nanosized Pinning Sites in HTSC Compounds. <i>Journal of Superconductivity and Novel Magnetism</i> , 2004 , 17, 373-377		2
86	SQUID and Magneto-Optic Investigations of Flux Turbulence in the Critical State. <i>Journal of Superconductivity and Novel Magnetism</i> , 2002 , 15, 153-157		2

85	Microstructural studies of K2CO3 and Rb2CO3 doped YBCO HTSC. <i>Physica C: Superconductivity and Its Applications</i> , 2003 , 392-396, 596-600	1.3	2
84	Scaling of the magnetic response and field dependence for the characteristic pinning energy in (Y, Nd)Ba2Cu3O7-Buperconductors. <i>Superconductor Science and Technology</i> , 2001 , 14, 311-314	3.1	2
83	Magneto-optic and magnetic properties of (Nd0.33Eu0.33Sm0.33)1⊠YxBa2Cu3Oy superconductors. <i>Physica C: Superconductivity and Its Applications</i> , 2000 , 338, 284-290	1.3	2
82	TEM Observation of Interfaces between (Nd,Eu,Gd)2 BaCuO5 Secondary Phase and the (Nd,Eu,Gd)Ba2Cu3Oy Matrix in OCMG-Processed (Nd,Eu,Gd)-Ba-Cu-O 2000 , 497-499		2
81	Pinning Force Diagram of The Ternary Superconductor (Nd,Eu,Gd)-123 With Secondary Phase Additions 2000 , 359-361		2
80	Magnetic properties of polycrystalline KClO3-doped Y(1-0.2x)Ba(2-0.2x)KxCu3Oy(x = 0 \square .40) superconductors 2000 , 245-247		2
79	Microstructure and paramagnetic Meissner effect of YBa2Cu3Oy nanowire networks. <i>Journal of Nanoparticle Research</i> , 2020 , 22, 1	2.3	2
78	Paramagnetic Meissner Effect and Current Flow in YBCO Nanofiber Mats. <i>IEEE Transactions on Applied Superconductivity</i> , 2021 , 31, 1-5	1.8	2
77	Low temperature scanning force microscopy using piezoresistive cantilevers. <i>Measurement Science and Technology</i> , 2015 , 26, 085903	2	1
76	Fabrication of MgB2 Bulk Magnets with High Critical Currents. <i>Advances in Science and Technology</i> , 2014 , 95, 196-201	0.1	1
75	Multiferroika. Materialien mit ferroelektrischer und -magnetischer Ordnung. <i>Physik in Unserer Zeit</i> , 2009 , 40, 132-137	0.1	1
74	The interaction of nanostripes and the twin structure in light-rare-earth-element-based 123-type high-Tc superconductors. <i>Physica C: Superconductivity and Its Applications</i> , 2011 , 471, 66-70	1.3	1
73	Texture analysis of melt-spun Ni-Mn-Ga tapes by means of electron backscatter diffraction (EBSD). <i>Journal of Physics: Conference Series</i> , 2010 , 200, 082013	0.3	1
72	HF-MFM imaging of stray fields from perpendicular write heads. <i>Journal of Physics: Conference Series</i> , 2010 , 200, 112004	0.3	1
71	Study of grain morphology of various magnetite samples by means of EBSD. <i>Journal of Physics:</i> Conference Series, 2010 , 200, 072053	0.3	1
70	Study of grain boundary properties in Ag-clad Bi2Sr2Ca2Cu3Oxtapes by multi-phase electron backscatter diffraction analysis. <i>Journal of Physics: Conference Series</i> , 2008 , 94, 012011	0.3	1
69	Study of cross-sections of magnetite thin films by means of electron backscatter diffraction (EBSD). <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2008 , 205, 1835-1838	1.6	1
68	Investigation of grain orientations of melt-textured HTSC with addition of uranium oxide, Y2O3and Y2BaCuO5. <i>Journal of Physics: Conference Series</i> , 2006 , 43, 527-530	0.3	1

(2004-2006)

67	Analysis of melt-textured YBCO with nanoscale inclusions. <i>Journal of Physics: Conference Series</i> , 2006 , 43, 522-526	0.3	1
66	Nanoscale stripe structures in SmBCO superconductors. <i>Journal of Physics: Conference Series</i> , 2006 , 43, 337-340	0.3	1
65	Domain-wall resistance at low temperature. <i>Journal of Magnetism and Magnetic Materials</i> , 2004 , 272-276, E1431-E1432	2.8	1
64	Position-dependent texture analysis of melt-textured YBCO by means of electron backscatter diffraction. <i>Physica C: Superconductivity and Its Applications</i> , 2003 , 392-396, 607-612	1.3	1
63	OIM and X-ray texture analysis of melt-textured YBCO superconductors. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2005 , 2, 1708-1713		1
62	Formation and behaviour of macrovortices during a turbulent relaxation process in high-Tcsuperconductors. <i>Journal of Physics Condensed Matter</i> , 2005 , 17, 2723-2732	1.8	1
61	ORIGIN OF ORDERING OSCILLATION OF LOCAL COMPOSITION IN MELT-PROCESSED REBa2Cu3O7-ISUPERCONDUCTORS (RE: Sm, Eu, Gd). <i>International Journal of Modern Physics B</i> , 2005 , 19, 159-161	1.1	1
60	The effect of Y1/Nd1(211) additions on the properties of the Y0.5.Nd0.5(123) composite. <i>Physica C: Superconductivity and Its Applications</i> , 2000 , 341-348, 617-618	1.3	1
59	Flux-pinning in Y0.5/Nd0.5(123) melt-textured sample. <i>Physica C: Superconductivity and Its Applications</i> , 2000 , 341-348, 1345-1346	1.3	1
58	Investigation of the relation between microstructural parameters and magnetic properties of KClO3-doped YBCO superconductors. <i>Physica C: Superconductivity and Its Applications</i> , 2000 , 341-348, 1989-1990	1.3	1
57	Flux distributions of an artificially granular YBa2Cu3O7II film observed using magneto-optic imaging. <i>Physica C: Superconductivity and Its Applications</i> , 2000 , 331, 113-126	1.3	1
56	Microstructural and elastic behaviour of OCMG-processed NdBaCuO materials. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 1999 , 65, 164-169	3.1	1
55	Details of the Superconducting Phase Transition in Nb Showing the Paramagnetic Meissner Effect. <i>Physica Status Solidi (B): Basic Research</i> , 1999 , 212, R13-R14	1.3	1
54	Magneto-optical imaging of Shubnikov phase. <i>Journal of Alloys and Compounds</i> , 1993 , 195, 483-490	5.7	1
53	Superconducting nanowire fiber mats and the paramagnetic Meissner effect. <i>Materials Today: Proceedings</i> , 2021 ,	1.4	1
52	()BaCuO and the Roeser-Huber Formula. <i>Materials</i> , 2021 , 14,	3.5	1
51	Polarized Light Microscopy Characterization of (Nd,Eu,Gd)-123 Superconductors Prepared by OCMG Process 2000 , 488-490		1
50	Surface Preparation of High-Tc Superconductors for MO-Imaging 2004 , 243-246		1

49	Magneto-optic imaging of flux penetration into an artificially granular high-Tc superconductor 1999 , 693-696		1
48	Microstructure and properties of superconducting, ferromagnetic and hybrid nanowire networks of La1.85Sr0.15CuO4 and La0.5Sr0.5MnO3. <i>IOP Conference Series: Materials Science and Engineering</i> , 2019 , 625, 012028	0.4	1
47	Magnetic Characterization of Bulk C-Added MgB2. <i>IEEE Transactions on Applied Superconductivity</i> , 2019 , 29, 1-4	1.8	1
46	Microstructure analysis of electrospun La0.8Sr0.2MnO3 nanowires using electron microscopy and electron backscatter diffraction (EBSD). <i>AIP Advances</i> , 2021 , 11, 025008	1.5	1
45	Modelling the Anomalous Low Field Peak Position in Bi-2223 Tapes 1998 , 167, R1		1
44	Calculation of Tc of Superconducting Elements with the Roeser⊞uber Formalism. <i>Metals</i> , 2022 , 12, 337	2.3	1
43	Measurement of the characteristics of the Earth magnetic field using a smartphone magnetic sensor. <i>Physics Education</i> , 2022 , 57, 045021	0.8	1
42	Flux pinning docking interfaces in satellites using superconducting foams as trapped field magnets. <i>IEEE Transactions on Applied Superconductivity</i> , 2022 , 1-1	1.8	O
41	Residual Stress/Strain Analysis of Bulk YBCO Superconductors Using EBSD. <i>IEEE Transactions on Applied Superconductivity</i> , 2021 , 1-1	1.8	O
40	Pinning Force Scaling Analysis of Polycrystalline MgB2. <i>Journal of Superconductivity and Novel Magnetism</i> , 2020 , 33, 3333-3339	1.5	O
39	High-Tc Cuprate Superconductors: Materials, Structures and Properties 2022 , 181-209		O
38	Transmission EBSD (t-EBSD) to determine grain and grain boundary properties on nanostructured superconductor samples. <i>Journal of Physics: Conference Series</i> , 2019 , 1293, 012008	0.3	
37	Simulation of Field Dependence of Critical Current Densities of Bulk High TcSuperconducting Materials regarding Thermally Activated Flux Motion. <i>Journal of Physics: Conference Series</i> , 2017 , 871, 012023	0.3	
36	Production and Characterization of Bulk MgB2Material made by the Combination of Crystalline and Carbon Coated Amorphous Boron Powders. <i>Journal of Physics: Conference Series</i> , 2017 , 871, 012058	0.3	
35	Advanced Characterization of Multiferroic Materials by Scanning Probe Methods and Scanning Electron Microscopy 2016 , 400-434		
34	Porous high-Tc superconducting cuprates: Advantages and applications. <i>Journal of Physics: Conference Series</i> , 2019 , 1293, 012009	0.3	
33	Influence of Field Decrements on the Relaxation Behavior of Thin High- \$T_{c}\$ Superconductors Measured Using a Levitation Balance. <i>IEEE Transactions on Applied Superconductivity</i> , 2012 , 22, 8200108	-8200	108
32	In der Schwebe. <i>Physik in Unserer Zeit</i> , 2011 , 42, 285-289	0.1	

(2000-2010)

31	Permalloy nanostructures for magneto-impedance measurements. <i>Journal of Physics: Conference Series</i> , 2010 , 200, 072031	0.3
30	Embedding of nanoparticles as flux pinning sites in superconducting samples. <i>Thin Solid Films</i> , 2010 , 518, 4734-4737	2.2
29	Pinning performance of (Nd0.33Eu0.2Gd0.47)Ba2Cu3Oysingle crystal. <i>Journal of Physics:</i> Conference Series, 2008 , 97, 012191	0.3
28	EBSD-Analysis of Nanoparticles Embedded in High-Tc Superconductors. <i>Microscopy and Microanalysis</i> , 2007 , 13, 360-361	0.5
27	Misorientations in [0 0 1] Magnetite Thin Films Studied by Electron Backscatter Diffraction. <i>Microscopy and Microanalysis</i> , 2007 , 13, 362-363	0.5
26	Two-step transition of (Nd0.33Eu0.33Gd0.33)Ba2Cu3Ox superconductors in high fields. <i>Physica C: Superconductivity and Its Applications</i> , 2001 , 357-360, 548-551	1.3
25	Magnetic characterization of superconducting thin films 2002 , 589-619	
24	SQUID and magneto-optic investigations of flux turbulence. <i>Physica C: Superconductivity and Its Applications</i> , 2000 , 341-348, 1275-1276	1.3
23	Field-cooled magnetization of YBa2Cu3O7\(\text{Luperconductors}\). <i>Physica C: Superconductivity and Its Applications</i> , 2000 , 340, 235-242	1.3
22	Temperature dependence of the magnetic hysteresis of a YBa2Cu3O7lsingle crystal. <i>European Physical Journal D</i> , 1996 , 46, 1605-1606	
21	Formation of the central peak in magnetization loops of type-II superconductors. <i>European Physical Journal D</i> , 1996 , 46, 1607-1608	
20	Interplay of YBCO and embedded 211 particles in melt-textured YBCO superconductors. <i>Journal of Superconductivity and Novel Magnetism</i> , 2005 , 18, 469-474	
19	Magnetic properties of superconducting and non-superconducting (Nd,Eu,Gd)-123 2000 , 248-250	
18	A Comparison of Low Temperature Elastic Behaviour between MLET-Processed Nd-Ba-Cu-O and Y-Ba-Cu-O Superconductors 2000 , 518-520	
17	Embedding of Secondary Phase 211 Particles in Melt-Textured Ternary (Nd,Eu,Gd)-Ba-Cu-O 2000 , 494-	-496
16	Exploring The Ternary Superconductors of the Type (Nd,Eu,Gd)-Ba-CuO 2000 , 443-445	
15	Preparation of (Nd,Eu,Gd)-Ba-Cu-O Single Crystals 2000 , 251-253	
14	Flux Pinning in Melt-Processed (Nd0.25Sm0.25Eu0.25Gd0.25) Ba2Cu3Oy Superconductors 2000 , 491-4	193
15	Preparation of (Nd,Eu,Gd)-Ba-Cu-O Single Crystals 2000 , 251-253	193

MO-Imaging of Granular And Structured High-Tc Superconductors 2004, 71-78 Analysis of Pinning in NdBa2Cu3O7-Euperconductors 1998, 517-520 Magneto-Optical Characterization of (Nd0.33Eu0.33Gd0.33)Ba2Cu3Oy Bulk Superconductors with Different Gd-211 Content 1999, 513-516 Field-cooled flux distributions as tool to analyze pinning properties 1999, 247-250 Pinning in Nd-based 123-superconductors 1999, 255-258 Superconducting transitions of bulk 123 superconductors in fields up to 7 T 1999, 251-254 Magnetic properties of (Nd0.33Eu0.33Gd0.33)Ba2Cu3Oy doped by additional Gd-211 particles 1999, 243-246 Effect of Pt Addition on Microstructure and Magnetic Properties in OCMG-Processed (Nd, Eu, Gd)-Ba-Cu-O 1999, 673-676 Direct observation of flux patterns to understand the effect of Y addition on the Jc(B) properties of melt-textured (Nd0.33Eu0.33Sm0.33)Ba2Cu3Oy 1999, 517-520 The possible applications of superconducting nanowire networks. Materials Today: Proceedings, 2022, 54, 125-130 Lassical Superconductors Materials, Structures and Properties 2022, 147-180 Magnetic Properties of Superconducting Materials 2022, 61-88	13	Granularity and the central peak in magnetization loops of thin Superconductors 2000 , 332-334	
Magneto-Optical Characterization of (Nd0.33Eu0.33Gd0.33)Ba2Cu3Oy Bulk Superconductors with Different Gd-211 Content 1999, 513-516 Field-cooled flux distributions as tool to analyze pinning properties 1999, 247-250 Pinning in Nd-based 123-superconductors 1999, 255-258 Superconducting transitions of bulk 123 superconductors in fields up to 7 T 1999, 251-254 Magnetic properties of (Nd0.33Eu0.33Gd0.33)Ba2Cu3Oy doped by additional Gd-211 particles 1999, 243-246 Effect of Pt Addition on Microstructure and Magnetic Properties in OCMG-Processed (Nd, Eu, Gd)-Ba-Cu-O 1999, 673-676 Direct observation of flux patterns to understand the effect of Y addition on the Jc(B) properties of melt-textured (Nd0.33Eu0.33Sm0.33)Ba2Cu3Oy 1999, 517-520 The possible applications of superconducting nanowire networks. Materials Today: Proceedings, 2022, 54, 125-130 1.4 Classical Superconductors Materials, Structures and Properties 2022, 147-180	12	MO-Imaging of Granular And Structured High-Tc Superconductors 2004 , 71-78	
Different Gd-211 Content 1999, 513-516 Field-cooled flux distributions as tool to analyze pinning properties 1999, 247-250 Pinning in Nd-based 123-superconductors 1999, 255-258 Superconducting transitions of bulk 123 superconductors in fields up to 7 T 1999, 251-254 Magnetic properties of (Nd0.33Eu0.33Gd0.33)Ba2Cu3Oy doped by additional Gd-211 particles 1999, 243-246 Effect of Pt Addition on Microstructure and Magnetic Properties in OCMG-Processed (Nd, Eu, Gd)-Ba-Cu-O 1999, 673-676 Direct observation of flux patterns to understand the effect of Y addition on the Jc(B) properties of melt-textured (Nd0.33Eu0.33Sm0.33)Ba2Cu3Oy 1999, 517-520 The possible applications of superconducting nanowire networks. Materials Today: Proceedings, 2022, 54, 125-130 Classical Superconductors Materials, Structures and Properties 2022, 147-180	11	Analysis of Pinning in NdBa2Cu3O7-\(\overline{\text{Lorentz}}\) uperconductors 1998 , 517-520	
8 Pinning in Nd-based 123-superconductors 1999, 255-258 7 Superconducting transitions of bulk 123 superconductors in fields up to 7 T 1999, 251-254 6 Magnetic properties of (Nd0.33Eu0.33Gd0.33)Ba2Cu3Oy doped by additional Gd-211 particles 1999, 243-246 5 Effect of Pt Addition on Microstructure and Magnetic Properties in OCMG-Processed (Nd, Eu, Gd)-Ba-Cu-O 1999, 673-676 4 Direct observation of flux patterns to understand the effect of Y addition on the Jc(B) properties of melt-textured (Nd0.33Eu0.33Sm0.33)Ba2Cu3Oy 1999, 517-520 The possible applications of superconducting nanowire networks. Materials Today: Proceedings, 2022, 54, 125-130 Classical Superconductors Materials, Structures and Properties 2022, 147-180	10		
Superconducting transitions of bulk 123 superconductors in fields up to 7 T 1999, 251-254 Magnetic properties of (Nd0.33Eu0.33Gd0.33)Ba2Cu3Oy doped by additional Gd-211 particles 1999, 243-246 Effect of Pt Addition on Microstructure and Magnetic Properties in OCMG-Processed (Nd, Eu, Gd)-Ba-Cu-O 1999, 673-676 Direct observation of flux patterns to understand the effect of Y addition on the Jc(B) properties of melt-textured (Nd0.33Eu0.33Sm0.33)Ba2Cu3Oy 1999, 517-520 The possible applications of superconducting nanowire networks. Materials Today: Proceedings, 2022, 54, 125-130 Classical Superconductors Materials, Structures and Properties 2022, 147-180	9	Field-cooled flux distributions as tool to analyze pinning properties 1999 , 247-250	
Magnetic properties of (Nd0.33Eu0.33Gd0.33)Ba2Cu3Oy doped by additional Gd-211 particles 1999 , 243-246 Effect of Pt Addition on Microstructure and Magnetic Properties in OCMG-Processed (Nd, Eu, Gd)-Ba-Cu-O 1999, 673-676 Direct observation of flux patterns to understand the effect of Y addition on the Jc(B) properties of melt-textured (Nd0.33Eu0.33Sm0.33)Ba2Cu3Oy 1999, 517-520 The possible applications of superconducting nanowire networks. Materials Today: Proceedings, 2022, 54, 125-130 1.4 Classical Superconductors Materials, Structures and Properties 2022, 147-180	8	Pinning in Nd-based 123-superconductors 1999 , 255-258	
Effect of Pt Addition on Microstructure and Magnetic Properties in OCMG-Processed (Nd, Eu, Gd)-Ba-Cu-O 1999, 673-676 Direct observation of flux patterns to understand the effect of Y addition on the Jc(B) properties of melt-textured (Nd0.33Eu0.33Sm0.33)Ba2Cu3Oy 1999, 517-520 The possible applications of superconducting nanowire networks. <i>Materials Today: Proceedings</i> , 2022, 54, 125-130 Classical Superconductors Materials, Structures and Properties 2022, 147-180	7	Superconducting transitions of bulk 123 superconductors in fields up to 7 T 1999 , 251-254	
Gd)-Ba-Cu-O 1999, 673-676 Direct observation of flux patterns to understand the effect of Y addition on the Jc(B) properties of melt-textured (Nd0.33Eu0.33Sm0.33)Ba2Cu3Oy 1999, 517-520 The possible applications of superconducting nanowire networks. <i>Materials Today: Proceedings</i> , 2022, 54, 125-130 Classical Superconductors Materials, Structures and Properties 2022, 147-180	6		
of melt-textured (Nd0.33Eu0.33Sm0.33)Ba2Cu3Oy 1999, 517-520 The possible applications of superconducting nanowire networks. <i>Materials Today: Proceedings</i> , 2022, 54, 125-130 Classical Superconductors Materials, Structures and Properties 2022, 147-180	5		
2 Classical Superconductors Materials, Structures and Properties 2022, 147-180	4		
	3		1.4
Magnetic Properties of Superconducting Materials 2022 , 61-88	2	Classical Superconductors Materials, Structures and Properties 2022 , 147-180	
	1	Magnetic Properties of Superconducting Materials 2022 , 61-88	