
Zhibin Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9538475/publications.pdf Version: 2024-02-01

ΖΗΙΒΙΝ ΥΛΝ

#	Article	IF	CITATIONS
1	A Self-generated Chemotaxis-inspired routing method for digital microfluidic cooling of hotspots in integrated circuits. Energy Conversion and Management, 2022, 266, 115808.	9.2	4
2	Photothermal Waveguide-Directed Microreactor for Enhanced Copper Ion Detection from Quantum Dots. ACS Applied Nano Materials, 2022, 5, 9179-9187.	5.0	1
3	Promote anti- /de- frosting by suppressing directional ice bridging. International Journal of Heat and Mass Transfer, 2021, 165, 120609.	4.8	22
4	Fabrication and Property Regulation of Small-Size Polyamine Microcapsules via Integrating Microfluidic T-Junction and Interfacial Polymerization. Materials, 2021, 14, 1800.	2.9	3
5	Flow-Field-Assisted Dielectrophoretic Microchips for High-Efficiency Sheathless Particle/Cell Separation with Dual Mode. Analytical Chemistry, 2021, 93, 7606-7615.	6.5	6
6	Two-dimensional colloidal particle assembly in ionic surfactant solutions under an oscillatory electric field. Journal Physics D: Applied Physics, 2021, 54, 475302.	2.8	1
7	Paper-based electrowetting devices fabricated with cellulose paper and paraffin wax. Results in Physics, 2021, 31, 105042.	4.1	4
8	Versatility of the microencapsulation technique via integrating microfluidic T-Junction and interfacial polymerization in encapsulating different polyamines. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 604, 125097.	4.7	13
9	Photothermal conversion of SiO ₂ @Au nanoparticles mediated by surface morphology of gold cluster layer. RSC Advances, 2020, 10, 33119-33128.	3.6	17
10	Process regulation for encapsulating pure polyamine via integrating microfluidic <scp>Tâ€junction</scp> and interfacial polymerization. Journal of Polymer Science, 2020, 58, 1810-1824.	3.8	5
11	Kinetics of colloidal particle deposition in microfluidic systems under temperature gradients: experiment and modelling. Soft Matter, 2020, 16, 3649-3656.	2.7	3
12	Intelligent droplet manipulation in electrowetting devices via capacitance-based sensing and actuation for self-adaptive digital microfluidics. Microfluidics and Nanofluidics, 2020, 24, 1.	2.2	4
13	Shell Formation Mechanism for Direct Microencapsulation of Nonequilibrium Pure Polyamine Droplet. Journal of Physical Chemistry C, 2019, 123, 22413-22423.	3.1	9
14	Droplet-Based Microfluidic Thermal Management Methods for High Performance Electronic Devices. Micromachines, 2019, 10, 89.	2.9	22
15	In-Channel Responsive Surface Wettability for Reversible and Multiform Emulsion Droplet Preparation and Applications. ACS Applied Materials & Interfaces, 2019, 11, 16934-16943.	8.0	32
16	Self-Healing Flexible Conductive Film by Repairing Defects via Flowable Liquid Metal Droplets. Micromachines, 2019, 10, 113.	2.9	6
17	Hydrodynamic Effects on Particle Deposition in Microchannel Flows at Elevated Temperatures. Journal of Heat Transfer, 2018, 140, .	2.1	4
18	Improving Electrophoretic Particle Motion Control in Electrophoretic Displays by Eliminating the Fringing Effect via Driving Waveform Design. Micromachines, 2018, 9, 143.	2.9	28

Zhibin Yan

#	Article	IF	CITATIONS
19	Particle directed dual-fluid flow driven by electrowetting for controllable multiway light valves. Applied Physics Letters, 2018, 112, .	3.3	6
20	Rapid prototyping of single-layer microfluidic PDMS devices with abrupt depth variations under non-clean-room conditions by using laser ablation and UV-curable polymer. Microfluidics and Nanofluidics, 2017, 21, 1.	2.2	13
21	Particulate Fouling and Mitigation Approach in Microchannel Heat Exchanger. , 2016, , .		2
22	Deposition of colloidal particles in a microchannel at elevated temperatures. Microfluidics and Nanofluidics, 2015, 18, 403-414.	2.2	17
23	Particle Deposition in Microfluidic Devices at Elevated Temperatures. , 0, , .		1