
Yvon Jaillais

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9538312/publications.pdf Version: 2024-02-01

YVON LAULAIS

#	Article	IF	CITATIONS
1	AtSNX1 defines an endosome for auxin-carrier trafficking in Arabidopsis. Nature, 2006, 443, 106-109.	27.8	324
2	Brassinosteroids modulate the efficiency of plant immune responses to microbe-associated molecular patterns. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 297-302.	7.1	287
3	Unraveling the paradoxes of plant hormone signaling integration. Nature Structural and Molecular Biology, 2010, 17, 642-645.	8.2	258
4	A multiâ€colour/multiâ€affinity marker set to visualize phosphoinositide dynamics in <scp>A</scp> rabidopsis. Plant Journal, 2014, 77, 322-337.	5.7	241
5	Tyrosine phosphorylation controls brassinosteroid receptor activation by triggering membrane release of its kinase inhibitor. Genes and Development, 2011, 25, 232-237.	5.9	236
6	Cryptochrome 1 and phytochrome B control shadeâ€avoidance responses in Arabidopsis via partially independent hormonal cascades. Plant Journal, 2011, 67, 195-207.	5.7	223
7	The molecular circuitry of brassinosteroid signaling. New Phytologist, 2015, 206, 522-540.	7.3	218
8	A PtdIns(4)P-driven electrostatic field controls cell membrane identity and signalling in plants. Nature Plants, 2016, 2, 16089.	9.3	218
9	The Retromer Protein VPS29 Links Cell Polarity and Organ Initiation in Plants. Cell, 2007, 130, 1057-1070.	28.9	214
10	Developmental control of plant Rho GTPase nano-organization by the lipid phosphatidylserine. Science, 2019, 364, 57-62.	12.6	182
11	COP1 mediates the coordination of root and shoot growth by light through modulation of PIN1- and PIN2-dependent auxin transport in <i>Arabidopsis</i> . Development (Cambridge), 2012, 139, 3402-3412.	2.5	167
12	Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission–Brillouin imaging. Science Signaling, 2016, 9, rs5.	3.6	153
13	Extracellular leucine-rich repeats as a platform for receptor/coreceptor complex formation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8503-8507.	7.1	146
14	Internalization and vacuolar targeting of the brassinosteroid hormone receptor BRI1 are regulated by ubiquitination. Nature Communications, 2015, 6, 6151.	12.8	143
15	Structural basis for plant plasma membrane protein dynamics and organization into functional nanodomains. ELife, 2017, 6, .	6.0	135
16	Evidence for a sorting endosome in Arabidopsis root cells. Plant Journal, 2008, 53, 237-247.	5.7	134
17	A Combinatorial Lipid Code Shapes the Electrostatic Landscape of Plant Endomembranes. Developmental Cell, 2018, 45, 465-480.e11.	7.0	128
18	A versatile Multisite Gatewayâ€compatible promoter and transgenic line collection for cell typeâ€specific functional genomics in Arabidopsis. Plant Journal, 2016, 85, 320-333.	5.7	116

YVON JAILLAIS

#	Article	IF	CITATIONS
19	Functions of Anionic Lipids in Plants. Annual Review of Plant Biology, 2020, 71, 71-102.	18.7	111
20	Regulation of polar auxin transport by protein and lipid kinases. Journal of Experimental Botany, 2016, 67, 4015-4037.	4.8	109
21	AUXOLOGY: When auxin meets plant evo-devo. Developmental Biology, 2012, 369, 19-31.	2.0	104
22	The epidermis coordinates auxin-induced stem growth in response to shade. Genes and Development, 2016, 30, 1529-1541.	5.9	99
23	Precision targeting by phosphoinositides: how PIs direct endomembrane trafficking in plants. Current Opinion in Plant Biology, 2017, 40, 22-33.	7.1	98
24	Temporal integration of auxin information for the regulation of patterning. ELife, 2020, 9, .	6.0	94
25	The Nanoscale Organization of the Plasma Membrane and Its Importance in Signaling: A Proteolipid Perspective. Plant Physiology, 2020, 182, 1682-1696.	4.8	93
26	Analyses of SORTING NEXINs Reveal Distinct Retromer-Subcomplex Functions in Development and Protein Sorting in <i>Arabidopsis thaliana</i> Â Â. Plant Cell, 2011, 22, 3980-3991.	6.6	90
27	Phospholipids across scales: lipid patterns and plant development. Current Opinion in Plant Biology, 2020, 53, 1-9.	7.1	83
28	BRASSINOSTEROID-SIGNALING KINASE 3, a plasma membrane-associated scaffold protein involved in early brassinosteroid signaling. PLoS Genetics, 2019, 15, e1007904.	3.5	76
29	Interdependent Nutrient Availability and Steroid Hormone Signals Facilitate Root Growth Plasticity. Developmental Cell, 2018, 46, 59-72.e4.	7.0	69
30	Osmotic Stress Activates Two Reactive Oxygen Species Pathways with Distinct Effects on Protein Nanodomains and Diffusion. Plant Physiology, 2019, 179, 1581-1593.	4.8	62
31	Brassinosteroid signaling and BRI1 dynamics went underground. Current Opinion in Plant Biology, 2016, 33, 92-100.	7.1	58
32	Mechanisms Governing the Endosomal Membrane Recruitment of the Core Retromer in Arabidopsis. Journal of Biological Chemistry, 2013, 288, 8815-8825.	3.4	57
33	Specific Recruitment of Phosphoinositide Species to the Plant-Pathogen Interfacial Membrane Underlies Arabidopsis Susceptibility to Fungal Infection. Plant Cell, 2020, 32, 1665-1688.	6.6	47
34	Metabolic Cellular Communications: Feedback Mechanisms between Membrane Lipid Homeostasis and Plant Development. Developmental Cell, 2020, 54, 171-182.	7.0	45
35	The Arabidopsis translocator protein (AtTSPO) is regulated at multiple levels in response to salt stress and perturbations in tetrapyrrole metabolism. BMC Plant Biology, 2011, 11, 108.	3.6	42
36	Anionic lipids and the maintenance of membrane electrostatics in eukaryotes. Plant Signaling and Behavior, 2017, 12, e1282022.	2.4	39

YVON JAILLAIS

#	Article	IF	CITATIONS
37	Auxin-Regulated Reversible Inhibition of TMK1 Signaling by MAKR2 Modulates the Dynamics of Root Gravitropism. Current Biology, 2021, 31, 228-237.e10.	3.9	39
38	Guidelines for the Use of Protein Domains in Acidic Phospholipid Imaging. Methods in Molecular Biology, 2016, 1376, 175-194.	0.9	37
39	Brassinosteroids, gibberellins and light-mediated signalling are the three-way controls of plant sprouting. Nature Cell Biology, 2012, 14, 788-790.	10.3	36
40	Arabidopsis ADR1 helper NLR immune receptors localize and function at the plasma membrane in a phospholipid dependent manner. New Phytologist, 2021, 232, 2440-2456.	7.3	36
41	A phosphoinositide map at the shoot apical meristem in Arabidopsis thaliana. BMC Biology, 2018, 16, 20.	3.8	34
42	Concerted expression of a cell cycle regulator and a metabolic enzyme from a bicistronic transcript in plants. Nature Plants, 2019, 5, 184-193.	9.3	30
43	Inducible depletion of PI(4,5)P2 by the synthetic iDePP system in Arabidopsis. Nature Plants, 2021, 7, 587-597.	9.3	29
44	Function of membrane domains in rho-of-plant signaling. Plant Physiology, 2021, 185, 663-681.	4.8	28
45	Single-particle tracking photoactivated localization microscopy of membrane proteins in living plant tissues. Nature Protocols, 2021, 16, 1600-1628.	12.0	28
46	A glossary of plant cell structures: Current insights and future questions. Plant Cell, 2022, 34, 10-52.	6.6	27
47	Sphingolipids mediate polar sorting of PIN2 through phosphoinositide consumption at the trans-Golgi network. Nature Communications, 2021, 12, 4267.	12.8	25
48	A nanodomain-anchored scaffolding complex is required for the function and localization of phosphatidylinositol 4-kinase alpha in plants. Plant Cell, 2022, 34, 302-332.	6.6	22
49	Imaging the living plant cell: From probes to quantification. Plant Cell, 2022, 34, 247-272.	6.6	20
50	Anionic phospholipid gradients: an uncharacterized frontier of the plant endomembrane network. Plant Physiology, 2021, 185, 577-592.	4.8	16
51	Automatic Quantification of the Number of Intracellular Compartments in Arabidopsis thaliana Root Cells. Bio-protocol, 2017, 7, .	0.4	15
52	Automated Tracking of Root for Confocal Time-lapse Imaging of Cellular Processes. Bio-protocol, 2017, 7, .	0.4	14
53	Sorting Out the Sorting Functions of Endosomes in Arabidopsis. Plant Signaling and Behavior, 2007, 2, 556-558.	2.4	12
54	Phosphatidylinositol 4â€phosphate: a key determinant of plasma membrane identity and function in plants. New Phytologist, 2022, , .	7.3	8

YVON JAILLAIS

#	Article	IF	CITATIONS
55	Plant Cell Biology: How to Give Root Hairs Enough ROPs?. Current Biology, 2019, 29, R405-R407.	3.9	7
56	Meet your MAKR: the membraneâ€associated kinase regulator protein family in the regulation of plant development. FEBS Journal, 2022, 289, 6172-6186.	4.7	7
57	Experimental manipulation of phosphoinositide lipids: from cells to organisms. Trends in Cell Biology, 2022, , .	7.9	7
58	Plant Cell Polarity: Sterols Enter into Action after Cytokinesis. Developmental Cell, 2008, 14, 318-320.	7.0	5
59	Transient Gene Expression as a Tool to Monitor and Manipulate the Levels of Acidic Phospholipids in Plant Cells. Methods in Molecular Biology, 2019, 1992, 189-199.	0.9	4
60	Feeling the pressure: A mechanical tale of the pollen tube journey through the pistil. Developmental Cell, 2021, 56, 873-875.	7.0	4
61	Lipid-mediated regulation of flowering time. Science, 2021, 373, 1086-1087.	12.6	4
62	Inhibition of Very Long Chain Fatty Acids Synthesis Mediates PI3P Homeostasis at Endosomal Compartments. International Journal of Molecular Sciences, 2021, 22, 8450.	4.1	3
63	Cell shape: A ROP regulatory tug-of-war in pavement cell morphogenesis. Current Biology, 2022, 32, R116-R118.	3.9	3
64	Exogenous treatment of Arabidopsis seedlings with lyso-phospholipids for the inducible complementation of lipid mutants. STAR Protocols, 2021, 2, 100626.	1.2	1
65	Probing Activation and Deactivation of the BRASSINOSTEROID INSENSITIVE1 Receptor Kinase by Immunoprecipitation. Methods in Molecular Biology, 2017, 1564, 169-180.	0.9	0