List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9538229/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging, 2011, 3, 192-222.	1.4	520
2	Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Inhibitors: Rationale and Importance to Inhibiting These Pathways in Human Health. Oncotarget, 2011, 2, 135-164.	0.8	509
3	GSK-3 as potential target for therapeutic intervention in cancer. Oncotarget, 2014, 5, 2881-2911.	0.8	407
4	Antitumor effects of curcumin, alone or in combination with cisplatin or doxorubicin, on human hepatic cancer cells. Analysis of their possible relationship to changes in NF-kB activation levels and in IAP gene expression. Cancer Letters, 2005, 224, 53-65.	3.2	295
5	Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Cascade Inhibitors: How Mutations Can Result in Therapy Resistance and How to Overcome Resistance. Oncotarget, 2012, 3, 1068-1111.	0.8	279
6	Epidemiology, Risk Factors, and Natural History of Hepatocellular Carcinoma. Annals of the New York Academy of Sciences, 2002, 963, 13-20.	1.8	252
7	Mutations and Deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Cascades Which Alter Therapy Response Oncotarget, 2012, 3, 954-987.	0.8	244
8	Deregulation of the EGFR/PI3K/PTEN/Akt/mTORC1 pathway in breast cancer: possibilities for therapeutic intervention. Oncotarget, 2014, 5, 4603-4650.	0.8	231
9	Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging, 2017, 9, 1477-1536.	1.4	168
10	Targeted therapy for hepatocellular carcinoma: novel agents on the horizon. Oncotarget, 2012, 3, 236-260.	0.8	152
11	Therapeutic resistance resulting from mutations in Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways. Journal of Cellular Physiology, 2011, 226, 2762-2781.	2.0	147
12	Targeting GSK3 and Associated Signaling Pathways Involved in Cancer. Cells, 2020, 9, 1110.	1.8	146
13	Effects of mutations in Wnt/β-catenin, hedgehog, Notch and PI3K pathways on GSK-3 activity—Diverse effects on cell growth, metabolism and cancer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2942-2976.	1.9	137
14	Transcriptional regulation of miR-224 upregulated in human HCCs by NFκB inflammatory pathways. Journal of Hepatology, 2012, 56, 855-861.	1.8	134
15	Molecular mechanisms of sorafenib action in liver cancer cells. Cell Cycle, 2012, 11, 2843-2855.	1.3	129
16	Akt as a therapeutic target in cancer. Expert Opinion on Therapeutic Targets, 2008, 12, 1139-1165.	1.5	125
17	Roles of EGFR and KRAS and their downstream signaling pathways in pancreatic cancer and pancreatic cancer and pancreatic cancer stem cells. Advances in Biological Regulation, 2015, 59, 65-81.	1.4	121
18	The tumor microenvironment in hepatocellular carcinoma (Review). International Journal of Oncology, 2012, 40, 1733-47.	1.4	111

#	Article	IF	CITATIONS
19	Interleukin-6 and its soluble receptor in patients with liver cirrhosis and hepatocellular carcinoma. World Journal of Gastroenterology, 2006, 12, 2563.	1.4	104
20	Roles of signaling pathways in drug resistance, cancer initiating cells and cancer progression and metastasis. Advances in Biological Regulation, 2015, 57, 75-101.	1.4	100
21	Cyclooxygenases in hepatocellular carcinoma. World Journal of Gastroenterology, 2006, 12, 5113.	1.4	96
22	Resistance to diverse apoptotic triggers in multidrug resistant HL60 cells and its possible relationship to the expression of P-glycoprotein, Fas and of the novel anti-apoptosis factors IAP (inhibitory of) Tj ETQq0 0 0	rgBB/Øver	loc ls:1 0 Tf 50 (
23	Roles of CSK-3 and microRNAs on epithelial mesenchymal transition and cancer stem cells. Oncotarget, 2017, 8, 14221-14250.	0.8	86
24	Diverse roles of GSK-3: Tumor promoter–tumor suppressor, target in cancer therapy. Advances in Biological Regulation, 2014, 54, 176-196.	1.4	80
25	Roles of NGAL and MMP-9 in the tumor microenvironment and sensitivity to targeted therapy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 438-448.	1.9	79
26	Non invasive tools for the diagnosis of liver cirrhosis. World Journal of Gastroenterology, 2014, 20, 18131.	1.4	76
27	Nanotechnology applications for the therapy of liver fibrosis. World Journal of Gastroenterology, 2014, 20, 7242.	1.4	74
28	Oleocanthal exerts antitumor effects on human liver and colon cancer cells through ROS generation. International Journal of Oncology, 2017, 51, 533-544.	1.4	72
29	Novel cationic solid-lipid nanoparticles as non-viral vectors for gene delivery. Journal of Drug Targeting, 2007, 15, 295-301.	2.1	67
30	Nanostructured Lipid Carriers-Containing Anticancer Compounds: Preparation, Characterization, and Cytotoxicity Studies. Drug Delivery, 2007, 14, 61-67.	2.5	67
31	Heat Shock Protein 70 Serum Levels Differ Significantly in Patients with Chronic Hepatitis, Liver Cirrhosis, and Hepatocellular Carcinoma. Frontiers in Immunology, 2014, 5, 307.	2.2	60
32	RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC1 and TP53 pathways and regulatory miRs as therapeutic targets in hepatocellular carcinoma. Expert Opinion on Therapeutic Targets, 2019, 23, 915-929.	1.5	59
33	Biocompatible Lipid Nanoparticles as Carriers To Improve Curcumin Efficacy in Ovarian Cancer Treatment. Journal of Agricultural and Food Chemistry, 2017, 65, 1342-1352.	2.4	55
34	Emerging MEK inhibitors. Expert Opinion on Emerging Drugs, 2010, 15, 203-223.	1.0	54
35	Correlation between expression of cyclooxygenase-2 and the presence of inflammatory cells in human primary hepatocellular carcinoma: Possible role in tumor promotion and angiogenesis. World Journal of Gastroenterology, 2005, 11, 4638.	1.4	54
36	Potential Uses of Olive Oil Secoiridoids for the Prevention and Treatment of Cancer: A Narrative Review of Preclinical Studies. International Journal of Molecular Sciences, 2021, 22, 1234.	1.8	53

#	Article	IF	CITATIONS
37	The Role of CSK-3 in Cancer Immunotherapy: CSK-3 Inhibitors as a New Frontier in Cancer Treatment. Cells, 2020, 9, 1427.	1.8	51
38	IL-6 â^'174G/C Polymorphism and IL-6 Serum Levels in Patients with Liver Cirrhosis and Hepatocellular Carcinoma. OMICS A Journal of Integrative Biology, 2011, 15, 183-186.	1.0	50
39	Histamine and spontaneously released mast cell granules affect the cell growth of human hepatocellular carcinoma cells. Experimental and Molecular Medicine, 2007, 39, 284-294.	3.2	49
40	Synthesis and characterization of polyaminoacidic polycations for gene delivery. Biomaterials, 2006, 27, 2066-2075.	5.7	48
41	Expression of WISPs and of Their Novel Alternative Variants in Human Hepatocellular Carcinoma Cells. Annals of the New York Academy of Sciences, 2004, 1028, 432-439.	1.8	47
42	Induction of Apoptosis and Inhibition of Cell Growth in Human Hepatocellular Carcinoma Cells by COX-2 Inhibitors. Annals of the New York Academy of Sciences, 2004, 1028, 440-449.	1.8	47
43	Antitumor Effects of Dehydroxymethylepoxyquinomicin, a Novel Nuclear Factor-κB Inhibitor, in Human Liver Cancer Cells Are Mediated through a Reactive Oxygen Species-Dependent Mechanism. Molecular Pharmacology, 2009, 76, 290-300.	1.0	46
44	Metformin influences drug sensitivity in pancreatic cancer cells. Advances in Biological Regulation, 2018, 68, 13-30.	1.4	45
45	Cyclooxygenaseâ€2 Expression in Chronic Liver Diseases and Hepatocellular Carcinoma. Annals of the New York Academy of Sciences, 2009, 1155, 293-299.	1.8	44
46	Advances in Targeting Signal Transduction Pathways. Oncotarget, 2012, 3, 1505-1521.	0.8	41
47	Novel combination of Celecoxib and proteasome inhibitor MG132 provides synergistic antiproliferative and proapoptotic effects in human liver tumor cells. Cell Cycle, 2010, 9, 1399-1410.	1.3	39
48	Targeting the Cancer Initiating Cell: The Ultimate Target for Cancer Therapy. Current Pharmaceutical Design, 2012, 18, 1784-1795.	0.9	39
49	Pivotal roles of glycogen synthase-3 in hepatocellular carcinoma. Advances in Biological Regulation, 2017, 65, 59-76.	1.4	39
50	Regulation of GSK-3 activity by curcumin, berberine and resveratrol: Potential effects on multiple diseases. Advances in Biological Regulation, 2017, 65, 77-88.	1.4	39
51	New landscapes and horizons in hepatocellular carcinoma therapy. Aging, 2020, 12, 3053-3094.	1.4	37
52	Roles of TP53 in determining therapeutic sensitivity, growth, cellular senescence, invasion and metastasis. Advances in Biological Regulation, 2017, 63, 32-48.	1.4	36
53	Targeting HSP90 with the small molecule inhibitor AUY922 (luminespib) as a treatment strategy against hepatocellular carcinoma. International Journal of Cancer, 2019, 144, 2613-2624.	2.3	36
54	Potentiation of the antitumor effects of both selective cyclooxygenase-1 and cyclooxygenase-2 inhibitors in human hepatic cancer cells by inhibition of the MEK/ERK pathway. Cancer Biology and Therapy, 2007, 6, 1457-1464.	1.5	35

#	Article	lF	CITATIONS
55	Novel Combination of Sorafenib and Celecoxib Provides Synergistic Anti-Proliferative and Pro-Apoptotic Effects in Human Liver Cancer Cells. PLoS ONE, 2013, 8, e65569.	1.1	34
56	Lipid nanocarriers containing sorafenib inhibit colonies formation in human hepatocarcinoma cells. International Journal of Pharmaceutics, 2015, 493, 75-85.	2.6	34
57	Abilities of berberine and chemically modified berberines to inhibit proliferation of pancreatic cancer cells. Advances in Biological Regulation, 2019, 71, 172-182.	1.4	34
58	Critical Roles of EGFR Family Members in Breast Cancer and Breast Cancer Stem Cells: Targets for Therapy. Current Pharmaceutical Design, 2016, 22, 2358-2388.	0.9	34
59	Emerging Raf inhibitors. Expert Opinion on Emerging Drugs, 2009, 14, 633-648.	1.0	33
60	Targeting breast cancer initiating cells: Advances in breast cancer research and therapy. Advances in Biological Regulation, 2014, 56, 81-107.	1.4	32
61	A PTEN inhibitor displays preclinical activity against hepatocarcinoma cells. Cell Cycle, 2016, 15, 573-583.	1.3	31
62	Spontaneous cytotoxic activity of eosinophilic granule cells separated from the normal peritoneal cavity ofDicentrarchus labrax. Fish and Shellfish Immunology, 2000, 10, 143-154.	1.6	30
63	The novel NF-κB inhibitor DHMEQ synergizes with celecoxib to exert antitumor effects on human liver cancer cells by a ROS-dependent mechanism. Cancer Letters, 2012, 322, 35-44.	3.2	30
64	Cytotoxic activity of the novel small molecule AKT inhibitor SC66 in hepatocellular carcinoma cells. Oncotarget, 2015, 6, 1707-1722.	0.8	30
65	Nanoassemblies Based on Supramolecular Complexes of Nonionic Amphiphilic Cyclodextrin and Sorafenib as Effective Weapons to Kill Human HCC Cells. Biomacromolecules, 2015, 16, 3784-3791.	2.6	29
66	Preclinical evaluation of antitumor activity of the proteasome inhibitor MLN2238 (ixazomib) in hepatocellular carcinoma cells. Cell Death and Disease, 2018, 9, 28.	2.7	29
67	Expression of the IAPs in multidrug resistant tumor cells. Oncology Reports, 0, , .	1.2	29
68	Induction of apoptosis by the proteasome inhibitor MG132 in human HCC cells: Possible correlation with specific caspase-dependent cleavage of beta-catenin and inhibition of beta-catenin-mediated transactivation. International Journal of Molecular Medicine, 2004, 13, 741-8.	1.8	28
69	COX-2-Dependent and COX-2-Independent Mode of Action of Celecoxib in Human Liver Cancer Cells. OMICS A Journal of Integrative Biology, 2011, 15, 383-392.	1.0	27
70	Frequent Alteration of the Yin Yang 1/Raf-1 Kinase Inhibitory Protein Ratio in Hepatocellular Carcinoma. OMICS A Journal of Integrative Biology, 2011, 15, 267-272.	1.0	27
71	Introduction of WT-TP53 into pancreatic cancer cells alters sensitivity to chemotherapeutic drugs, targeted therapeutics and nutraceuticals. Advances in Biological Regulation, 2018, 69, 16-34.	1.4	27
72	Nanoparticles of a polyaspartamide-based brush copolymer for modified release of sorafenib: In vitro and in vivo evaluation. Journal of Controlled Release, 2017, 266, 47-56.	4.8	26

#	Article	IF	CITATIONS
73	Expression of IAPs and Alternative Splice Variants in Hepatocellular Carcinoma Tissues and Cells. Annals of the New York Academy of Sciences, 2004, 1028, 289-293.	1.8	25
74	Abilities of berberine and chemically modified berberines to interact with metformin and inhibit proliferation of pancreatic cancer cells. Advances in Biological Regulation, 2019, 73, 100633.	1.4	25
75	Effects of berberine, curcumin, resveratrol alone and in combination with chemotherapeutic drugs and signal transduction inhibitors on cancer cells—Power of nutraceuticals. Advances in Biological Regulation, 2018, 67, 190-211.	1.4	23
76	Ectopic NGAL expression can alter sensitivity of breast cancer cells to EGFR, Bcl-2, CaM-K inhibitors and the plant natural product berberine. Cell Cycle, 2012, 11, 4447-4461.	1.3	22
77	Cloning and expression of a type IX-like collagen in tissues of the ascidian Ciona intestinalis. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1577, 38-44.	2.4	21
78	Entrapment of an EGFR inhibitor into nanostructured lipid carriers (NLC) improves its antitumor activity against human hepatocarcinoma cells. Journal of Nanobiotechnology, 2014, 12, 21.	4.2	21
79	Roles of p53, NF-κB and the androgen receptor in controlling NGAL expression in prostate cancer cell lines. Advances in Biological Regulation, 2018, 69, 43-62.	1.4	21
80	Prostaglandin E ₂ Receptors and COX Enzymes in Human Hepatocellular Carcinoma. Annals of the New York Academy of Sciences, 2009, 1155, 300-308.	1.8	20
81	GSK-3β Can Regulate the Sensitivity of MIA-PaCa-2 Pancreatic and MCF-7 Breast Cancer Cells to Chemotherapeutic Drugs, Targeted Therapeutics and Nutraceuticals. Cells, 2021, 10, 816.	1.8	19
82	Association Between Single Nucleotide Polymorphisms in the Cyclooxygenase-2, Tumor Necrosis Factor-α, and Vascular Endothelial Growth Factor-A Genes, and Susceptibility to Hepatocellular Carcinoma. OMICS A Journal of Integrative Biology, 2011, 15, 193-196.	1.0	18
83	Hepatic and circulating levels of PCSK9 in morbidly obese patients: Relation with severity of liver steatosis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158792.	1.2	18
84	The Prevalence of NAFLD and Fibrosis in Bariatric Surgery Patients and the Reliability of Noninvasive Diagnostic Methods. BioMed Research International, 2020, 2020, 1-7.	0.9	18
85	The association of variants in <i>PNPLA3</i> and <i>GRP78</i> and the risk of developing hepatocellular carcinoma in an Italian population. Oncotarget, 2016, 7, 86791-86802.	0.8	16
86	Serum concentration of E-selectin in patients with chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. Journal of Cancer Research and Clinical Oncology, 2000, 126, 345-351.	1.2	15
87	Solid Lipid Nanoparticles Containing Nimesulide: Preparation, Characterization and Cytotoxicity Studies. Current Nanoscience, 2009, 5, 39-44.	0.7	15
88	Influences of TP53 and the anti-aging DDR1 receptor in controlling Raf/MEK/ERK and PI3K/Akt expression and chemotherapeutic drug sensitivity in prostate cancer cell lines. Aging, 2020, 12, 10194-10210.	1.4	15
89	Spatial Distribution of Collagen Type I mRNA inParacentrotus lividusEggs and Embryos. Biochemical and Biophysical Research Communications, 1997, 238, 334-337.	1.0	13
90	Effects of Ectopic Expression of NGAL on Doxorubicin Sensitivity. Oncotarget, 2012, 3, 1236-1245.	0.8	13

#	Article	IF	CITATIONS
91	Effects of TP53 Mutations and miRs on Immune Responses in the Tumor Microenvironment Important in Pancreatic Cancer Progression. Cells, 2022, 11, 2155.	1.8	13
92	Significance of Autologous Interleukin-6 Production in the HA22T/VGH Cell Model of Hepatocellular Carcinoma. Annals of the New York Academy of Sciences, 2006, 1089, 268-275.	1.8	12
93	Aromatase and Amphiregulin Are Correspondingly Expressed in Human Liver Cancer Cells. Annals of the New York Academy of Sciences, 2009, 1155, 252-256.	1.8	11
94	The selective cyclooxygenase-1 inhibitor SC-560 suppresses cell proliferation and induces apoptosis in human hepatocellular carcinoma cells. International Journal of Molecular Medicine, 2006, 17, 245.	1.8	10
95	Antitumor effects of the novel NF-κB inhibitor dehydroxymethyl-epoxyquinomicin on human hepatic cancer cells: analysis of synergy with cisplatin and of possible correlation with inhibition of pro-survival genes and IL-6 production. International Journal of Oncology, 2006, 28, 923.	1.4	10
96	Poly (ADP-ribose) polymerase inhibition synergizes with the NF-κB inhibitor DHMEQ to kill hepatocellular carcinoma cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2662-2673.	1.9	10
97	Effects of the MDM-2 inhibitor Nutlin-3a on PDAC cells containing and lacking WT-TP53 on sensitivity to chemotherapy, signal transduction inhibitors and nutraceuticals. Advances in Biological Regulation, 2019, 72, 22-40.	1.4	10
98	GSK-3 in liver diseases: Friend or foe?. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118743.	1.9	10
99	Properties of sea urchin coelomocyte agglutinins. Italian Journal of Zoology, 1996, 63, 353-356.	0.6	9
100	Abilities of β-Estradiol to interact with chemotherapeutic drugs, signal transduction inhibitors and nutraceuticals and alter the proliferation of pancreatic cancer cells. Advances in Biological Regulation, 2020, 75, 100672.	1.4	9
101	The NUPR1/p73 axis contributes to sorafenib resistance in hepatocellular carcinoma. Cancer Letters, 2021, 519, 250-262.	3.2	9
102	Outcome predictors in SARS-CoV-2 disease (COVID-19): The prominent role of IL-6 levels and an IL-6 gene polymorphism in a western Sicilian population. Journal of Infection, 2022, 85, 174-211.	1.7	9
103	Nectins in sea urchin eggs and embryos. Journal of the Marine Biological Association of the United Kingdom, 1994, 74, 27-34.	0.4	8
104	Circulating intercellular adhesion molecule-1 in patients with hepatocellular carcinoma. European Journal of Gastroenterology and Hepatology, 1997, 9, 805-809.	0.8	8
105	Phosphorylation-dependent regulation of skeletogenesis in sea urchin micromere-derived cells and embryos. Development Growth and Differentiation, 1999, 41, 769-775.	0.6	7
106	Association Between <i>MICA</i> Gene Variants and the Risk of Hepatitis C Virus-Induced Hepatocellular Cancer in a Sicilian Population Sample. OMICS A Journal of Integrative Biology, 2018, 22, 274-282.	1.0	7
107	Calcium-dependent self-aggregation of toposome, a sea urchin embryo cell adhesion molecule. Biology of the Cell, 1992, 74, 231-234.	0.7	6
108	Induction of Apoptosis by the Adenosine Derivative IB-MECA in Parental or Multidrug-Resistant HL-60 Leukemia Cells: Possible Relationship to the Effects on Inhibitor of Apoptosis Protein Levels. Chemotherapy, 2005, 51, 272-279.	0.8	6

#	Article	IF	CITATIONS
109	Sensitivity of pancreatic cancer cells to chemotherapeutic drugs, signal transduction inhibitors and nutraceuticals can be regulated by WT-TP53. Advances in Biological Regulation, 2021, 79, 100780.	1.4	6
110	Effects of the Mutant TP53 Reactivator APR-246 on Therapeutic Sensitivity of Pancreatic Cancer Cells in the Presence and Absence of WT-TP53. Cells, 2022, 11, 794.	1.8	6
111	Circulating Intercellular Adhesion Molecule-1 in Chronic Hepatitis C Patients with Normal or Elevated Aminotransferase before and after Alpha-Interferon Treatment. Intervirology, 2003, 46, 35-42.	1.2	4
112	Identification of an LPS-Induced Chemo-Attractive Peptide from Ciona robusta. Marine Drugs, 2020, 18, 209.	2.2	4
113	Effects of the MDM2 inhibitor Nutlin-3a on sensitivity of pancreatic cancer cells to berberine and modified berberines in the presence and absence of WT-TP53. Advances in Biological Regulation, 2021, , 100840.	1.4	4
114	Synthetic peptide-labelled micelles for active targeting of cells overexpressing EGF receptors. Amino Acids, 2019, 51, 1177-1185.	1.2	3
115	Circulating E-selectin levels in chronic hepatitis C patients with normal or elevated transaminase before and after alpha-interferon treatment. Inflammation, 2001, 25, 101-108.	1.7	2
116	Response to antiviral therapy and hepatic expression of cyclooxygenases in chronic hepatitis C. European Journal of Gastroenterology and Hepatology, 2007, 19, 927-933.	0.8	2