
Vladimir I Martynov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9538208/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modulation of the photophysical properties of multi-BODIPY-siloxane conjugates by varying the number of fluorophores. Dyes and Pigments, 2022, 203, 110371.	2.0	13
2	Cancer cells targeting with genetically engineered constructs based on a pH-dependent membrane insertion peptide and fluorescent protein. Biochemical and Biophysical Research Communications, 2022, 612, 141-146.	1.0	3
3	BODIPY derivatives as fluorescent reporters of molecular activities in living cells. Russian Chemical Reviews, 2021, 90, 1213-1262.	2.5	18
4	FLIM-Based Intracellular and Extracellular pH Measurements Using Genetically Encoded pH Sensor. Biosensors, 2021, 11, 340.	2.3	12
5	Impact of external amino acids on fluorescent protein chromophore biosynthesis revealed by molecular dynamics and mutagenesis studies. Journal of Photochemistry and Photobiology B: Biology, 2020, 206, 111853.	1.7	5
6	Genetically encoded fluorescent indicators for live cell pH imaging. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2924-2939.	1.1	47
7	Fluorescent protein Dendra2 as a ratiometric genetically encoded pH-sensor. Biochemical and Biophysical Research Communications, 2017, 493, 1518-1521.	1.0	22
8	Synthesis and crystal structure of a meso -decene-BODIPY dye as a functional bright fluorophore for silicone matrices. Mendeleev Communications, 2017, 27, 363-365.	0.6	8
9	Generation of photoactivatable fluorescent protein from photoconvertible ancestor. Russian Journal of Bioorganic Chemistry, 2017, 43, 340-343.	0.3	0
10	BODIPY-based dye for no-wash live-cell staining and imaging. BioTechniques, 2017, 63, 77-80.	0.8	13
11	Synthesis, crystal structure and optical properties of a new meso-acrylate BODIPY dye. Mendeleev Communications, 2016, 26, 196-198.	0.6	12
12	Crystal structure of the fluorescent protein from <i>Dendronephthya</i> sp. in both green and photoconverted red forms. Acta Crystallographica Section D: Structural Biology, 2016, 72, 922-932.	1.1	11
13	Synthesis and photophysical properties of a new BODIPY-based siloxane dye. Tetrahedron Letters, 2016, 57, 979-982.	0.7	41
14	Synthetic Fluorophores for Visualizing Biomolecules in Living Systems. Acta Naturae, 2016, 8, 33-46.	1.7	44
15	Yellow fluorescent protein phiYFPv (<i>Phialidium</i>): structure and structure-based mutagenesis. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 1005-1012.	2.5	25
16	The influence of chromophore-protein interactions on spectroscopic properties of the yellow fluorescent protein. Doklady Biochemistry and Biophysics, 2012, 445, 207-209.	0.3	3
17	Probing the structural determinants of yellow fluorescence of a protein from Phialidium sp Biochemical and Biophysical Research Communications, 2011, 407, 230-235.	1.0	13
18	Structural Evidence for a Dehydrated Intermediate in Green Fluorescent Protein Chromophore Biosynthesis. Journal of Biological Chemistry, 2010, 285, 15978-15984.	1.6	31

VLADIMIR I MARTYNOV

#	Article	IF	CITATIONS
19	Structural Basis for Phototoxicity of the Genetically Encoded Photosensitizer KillerRed. Journal of Biological Chemistry, 2009, 284, 32028-32039.	1.6	123
20	Posttranslational chemistry of proteins of the GFP family. Biochemistry (Moscow), 2009, 74, 250-259.	0.7	7
21	GFP Family: Structural Insights into Spectral Tuning. Chemistry and Biology, 2008, 15, 755-764.	6.2	177
22	Chromophore Structure of the Kindling Fluorescent Protein asFP595 fromAnemonia sulcata. Journal of the American Chemical Society, 2007, 129, 7748-7749.	6.6	30
23	Refined crystal structures of red and green fluorescent proteins from the button polypZoanthus. Acta Crystallographica Section D: Biological Crystallography, 2007, 63, 1082-1093.	2.5	25
24	Chromophore Aspartate Oxidationâ^'Decarboxylation in the Green-to-Red Conversion of a Fluorescent Protein from Zoanthus sp. 2. Biochemistry, 2007, 46, 11528-11535.	1.2	19
25	Structure of a red fluorescent protein fromZoanthus, zRFP574, reveals a novel chromophore. Acta Crystallographica Section D: Biological Crystallography, 2006, 62, 527-532.	2.5	15
26	Structure and Reactivity of the Chromophore of a GFP-like Chromoprotein fromCondylactis giganteaâ€. Biochemistry, 2006, 45, 7256-7264.	1.2	21
27	Synthesis and Properties of the Chromophore of the asFP595 Chromoprotein fromAnemonia sulcataâ€. Biochemistry, 2005, 44, 5788-5793.	1.2	74
28	Photoconversion of the Chromophore of a Fluorescent Protein from Dendronephthya sp Biochemistry (Moscow), 2004, 69, 901-908.	0.7	38
29	A Purple-blue Chromoprotein from Goniopora tenuidens Belongs to the DsRed Subfamily of GFP-like Proteins. Journal of Biological Chemistry, 2003, 278, 46288-46292.	1.6	37
30	Far-red fluorescent tag for protein labelling. Biochemical Journal, 2002, 368, 17-21.	1.7	83
31	GFP-like chromoproteins as a source of far-red fluorescent proteins. FEBS Letters, 2001, 507, 16-20.	1.3	240
32	Alternative Cyclization in GFP-like Proteins Family. Journal of Biological Chemistry, 2001, 276, 21012-21016.	1.6	44
33	Proteinase-treated photoreceptor discs. Photoelectric activity of the partially-digested rhodopsin and membrane orientation. FEBS Journal, 1984, 142, 583-590.	0.2	9
34	Histamine releasing and anti-inflammatory activities of MCD-peptide and its modified forms. Agents and Actions, 1981, 11, 69-71.	0.7	12
35	Character of the histamine-liberating action of MCD-peptide from bee venom. Bulletin of Experimental Biology and Medicine, 1977, 84, 1013-1015.	0.3	3