
Kolleboyina Jayaramulu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9538128/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carbon Nanotube Based Metal–Organic Framework Hybrids From Fundamentals Toward Applications (Small 4/2022). Small, 2022, 18, .	5.2	0
2	Hierarchical porous metal–organic framework materials for efficient oil–water separation. Journal of Materials Chemistry A, 2022, 10, 2751-2785.	5.2	48
3	Metal-organic framework/conductive polymer hybrid materials for supercapacitors. Applied Materials Today, 2022, 26, 101387.	2.3	26
4	Carbon Nanotube Based Metal–Organic Framework Hybrids From Fundamentals Toward Applications. Small, 2022, 18, e2104628.	5.2	33
5	Recent advancements in metal–organic frameworks integrating quantum dots (QDs@MOF) and their potential applications. Nanotechnology Reviews, 2022, 11, 1947-1976.	2.6	17
6	Cyclodextrin metal–organic frameworks and derivatives: recent developments and applications. Chemical Society Reviews, 2022, 51, 5175-5213.	18.7	44
7	Large interspaced layered potassium niobate nanosheet arrays as an ultrastable anode for potassium ion capacitor. Energy Storage Materials, 2021, 34, 475-482.	9.5	33
8	Covalent Grapheneâ€MOF Hybrids for Highâ€₽erformance Asymmetric Supercapacitors. Advanced Materials, 2021, 33, e2004560.	11.1	121
9	Asymmetric Supercapacitors: Covalent Grapheneâ€MOF Hybrids for Highâ€Performance Asymmetric Supercapacitors (Adv. Mater. 4/2021). Advanced Materials, 2021, 33, 2170028.	11.1	8
10	Hetero Metalâ€Organic Hybrids as Highly Active Peroxidase Mimics for Biosensing Application. ChemistrySelect, 2021, 6, 5140-5147.	0.7	3
11	Ultrafine TiO ₂ Nanoparticle Supported Nitrogenâ€Rich Graphitic Porous Carbon as an Efficient Anode Material for Potassiumâ€Ion Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2100042.	2.8	8
12	Two-dimensional Conducting Metal-Organic Frameworks Enabled Energy Storage Devices. Energy Storage Materials, 2021, 37, 396-416.	9.5	44
13	Nanostructured NaFeS2 as a cost-effective and robust electrocatalyst for hydrogen and oxygen evolution with reduced overpotentials. Chemical Engineering Journal, 2021, 426, 131315.	6.6	20
14	A multifunctional covalently linked graphene–MOF hybrid as an effective chemiresistive gas sensor. Journal of Materials Chemistry A, 2021, 9, 17434-17441.	5.2	26
15	Two-dimensional MOF-based liquid marbles: surface energy calculations and efficient oil–water separation using a ZIF-9-III@PVDF membrane. Journal of Materials Chemistry A, 2021, 9, 23651-23659.	5.2	20
16	Emerging MXene@Metal–Organic Framework Hybrids: Design Strategies toward Versatile Applications. ACS Nano, 2021, 15, 18742-18776.	7.3	81
17	Rational Design of Graphene Derivatives for Electrochemical Reduction of Nitrogen to Ammonia. ACS Nano, 2021, 15, 17275-17298.	7.3	48
18	Supercapacitors operated at extremely low environmental temperatures. Journal of Materials Chemistry A, 2021, 9, 26603-26627.	5.2	25

#	Article	IF	CITATIONS
19	Hierarchical Porous Graphene–Iron Carbide Hybrid Derived From Functionalized Graphene-Based Metal–Organic Gel as Efficient Electrochemical Dopamine Sensor. Frontiers in Chemistry, 2020, 8, 544.	1.8	6
20	MHP@MOF Hybrids: Metal Halide Perovskite@Metalâ€Organic Framework Hybrids: Synthesis, Design, Properties, and Applications (Small 47/2020). Small, 2020, 16, 2070258.	5.2	1
21	True Meaning of Pseudocapacitors and Their Performance Metrics: Asymmetric versus Hybrid Supercapacitors. Small, 2020, 16, e2002806.	5.2	405
22	Human virus detection with graphene-based materials. Biosensors and Bioelectronics, 2020, 166, 112436.	5.3	140
23	Metal Halide Perovskite@Metalâ€Organic Framework Hybrids: Synthesis, Design, Properties, and Applications. Small, 2020, 16, e2004891.	5.2	46
24	Metal–Organic Frameworks: Hydrophobic Metal–Organic Frameworks (Adv. Mater. 32/2019). Advanced Materials, 2019, 31, 1970230.	11.1	40
25	Shapeâ€Assisted 2D MOF/Graphene Derived Hybrids as Exceptional Lithiumâ€Ion Battery Electrodes. Advanced Functional Materials, 2019, 29, 1902539.	7.8	118
26	Hydrophobic Metal–Organic Frameworks. Advanced Materials, 2019, 31, e1900820.	11.1	138
27	Metal–Organic Framework (MOF) Derived Electrodes with Robust and Fast Lithium Storage for Liâ€ l on Hybrid Capacitors. Advanced Functional Materials, 2019, 29, 1900532.	7.8	141
28	Ultrathin Hierarchical Porous Carbon Nanosheets for Highâ€Performance Supercapacitors and Redox Electrolyte Energy Storage. Advanced Materials, 2018, 30, e1705789.	11.1	309
29	Unveiling BiVO ₄ nanorods as a novel anode material for high performance lithium ion capacitors: beyond intercalation strategies. Journal of Materials Chemistry A, 2018, 6, 6096-6106.	5.2	78
30	Hierarchical Porous Fluorinated Graphene Oxide@Metal–Organic Gel Composite: Label-Free Electrochemical Aptasensor for Selective Detection of Thrombin. ACS Applied Materials & Interfaces, 2018, 10, 41089-41097.	4.0	38
31	2D Metal-Organic Frameworks: Ultrathin 2D Cobalt Zeolite-Imidazole Framework Nanosheets for Electrocatalytic Oxygen Evolution (Adv. Sci. 11/2018). Advanced Science, 2018, 5, 1870072.	5.6	1
32	Ultrathin 2D Cobalt Zeoliteâ€Imidazole Framework Nanosheets for Electrocatalytic Oxygen Evolution. Advanced Science, 2018, 5, 1801029.	5.6	92
33	Binder driven self-assembly of metal-organic cubes towards functional hydrogels. Nature Communications, 2018, 9, 3587.	5.8	59
34	Shape Controlled Hierarchical Porous Hydrophobic/Oleophilic Metalâ€Organic Nanofibrous Gel Composites for Oil Adsorption. Advanced Materials, 2017, 29, 1605307.	11.1	155
35	Synthesis of nano-porous carbon and nitrogen doped carbon dots from an anionic MOF: a trace cobalt metal residue in carbon dots promotes electrocatalytic ORR activity. Journal of Materials Chemistry A, 2017, 5, 13573-13580.	5.2	96
36	Nanoporous Nitrogenâ€Doped Graphene Oxide/Nickel Sulfide Composite Sheets Derived from a Metalâ€Organic Framework as an Efficient Electrocatalyst for Hydrogen and Oxygen Evolution. Advanced Functional Materials, 2017, 27, 1700451.	7.8	198

#	Article	IF	CITATIONS
37	Electrocatalysis: Nanoporous Nitrogenâ€Doped Graphene Oxide/Nickel Sulfide Composite Sheets Derived from a Metalâ€Organic Framework as an Efficient Electrocatalyst for Hydrogen and Oxygen Evolution (Adv. Funct. Mater. 33/2017). Advanced Functional Materials, 2017, 27, .	7.8	1
38	Biomimetic Superhydrophobic/Superoleophilic Highly Fluorinated Graphene Oxide and ZIFâ€8 Composites for Oil–Water Separation. Angewandte Chemie - International Edition, 2016, 55, 1178-1182.	7.2	370
39	Biomimetische superhydrophobe/superoleophile hoch fluorierte Graphenoxidâ€ZIFâ€8â€Komposite für die Ölâ€Wasserâ€Trennung. Angewandte Chemie, 2016, 128, 1193-1197.	1.6	16
40	Low Overpotential Water Splitting Using Cobalt–Cobalt Phosphide Nanoparticles Supported on Nickel Foam. ACS Energy Letters, 2016, 1, 1192-1198.	8.8	143
41	An in situ porous cuprous oxide/nitrogen-rich graphitic carbon nanocomposite derived from a metal–organic framework for visible light driven hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 18037-18042.	5.2	27
42	Redoxâ€Active Metal–Organic Frameworks: Highly Stable Chargeâ€Separated States through Strut/Guestâ€toâ€Strut Electron Transfer. Chemistry - A European Journal, 2015, 21, 11701-11706.	1.7	60
43	Controlled synthesis of tunable nanoporous carbons for gas storage and supercapacitor application. Microporous and Mesoporous Materials, 2015, 206, 127-135.	2.2	20
44	Stabilization of Cu ₂ O nanoparticles on a 2D metal–organic framework for catalytic Huisgen 1,3-dipolar cycloaddition reaction. Dalton Transactions, 2015, 44, 83-86.	1.6	36
45	Chargeâ€Transfer Nanostructures through Noncovalent Amphiphilic Selfâ€Assembly: Extended Cofacial Donorâ€Acceptor Arrays. Asian Journal of Organic Chemistry, 2014, 3, 161-169.	1.3	9
46	Inâ€situ Stabilization of Tin Nanoparticles in Porous Carbon Matrix derived from Metal Organic Framework: High Capacity and High Rate Capability Anodes for Lithiumâ€ion Batteries. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 1115-1118.	0.6	29
47	A bimodal anionic MOF: turn-off sensing of Cu ^{II} and specific sensitization of Eu ^{III} . Chemical Communications, 2014, 50, 13567-13570.	2.2	120
48	Growth of 2D sheets of a MOF on graphene surfaces to yield composites with novel gas adsorption characteristics. Dalton Transactions, 2014, 43, 7383.	1.6	69
49	Temperature Induced Structural Transformations and Gas Adsorption in the Zeolitic Imidazolate Framework ZIF-8: A Raman Study. Journal of Physical Chemistry A, 2013, 117, 11006-11012.	1.1	212
50	Self-assembly of tetrabromoterephthalic acid with different metal system: Diversity in dimensionalities, structures and gas adsorption. Polyhedron, 2013, 52, 553-559.	1.0	4
51	Shape assisted fabrication of fluorescent cages of squarate based metal–organic coordination frameworks. Chemical Communications, 2013, 49, 3937.	2.2	17
52	A Nanoporous Borocarbonitride (BC ₄ N) with Novel Properties Derived from a Boronâ€Imidazolateâ€Based Metal–Organic Framework. Chemistry - A European Journal, 2013, 19, 6966-6970.	1.7	16
53	Hybrid nanocomposites of ZIF-8 with graphene oxide exhibiting tunable morphology, significant CO2 uptake and other novel properties. Chemical Communications, 2013, 49, 4947.	2.2	269
54	Luminescent Microporous Metal–Organic Framework with Functional Lewis Basic Sites on the Pore Surface: Specific Sensing and Removal of Metal Ions. Inorganic Chemistry, 2012, 51, 10089-10091.	1.9	203

#	Article	IF	CITATIONS
55	Three-Dimensional Metal–Organic Framework with Highly Polar Pore Surface: H ₂ and CO ₂ Storage Characteristics. Inorganic Chemistry, 2012, 51, 7103-7111.	1.9	66
56	Honeycomb Porous Framework of Zinc(II): Effective Host for Palladium Nanoparticles for Efficient Threeâ€Component (A ³) Coupling and Selective Gas Storage. ChemPlusChem, 2012, 77, 743-747.	1.3	38
57	Spontaneous self-assembly of designed cyclic dipeptide (Phg-Phg) into two-dimensional nano- and mesosheets. Supramolecular Chemistry, 2011, 23, 487-492.	1.5	46
58	Supramolecular Hydrogels and Highâ€Aspectâ€Ratio Nanofibers through Chargeâ€Transferâ€Induced Alternate Coassembly. Angewandte Chemie - International Edition, 2010, 49, 4218-4222.	7.2	253
59	Tunable emission from a porous metal–organic framework by employing an excited-state intramolecular proton transfer responsive ligand. Chemical Communications, 2010, 46, 7906.	2.2	170