
Vignesh Muthuvijayan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9537364/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of reduced graphene oxide (rGO)-isabgol nanocomposite dressings for enhanced vascularization and accelerated wound healing in normal and diabetic rats. Journal of Colloid and Interface Science, 2018, 517, 251-264.	5.0	102
2	Accelerated Healing of Diabetic Wounds Treated with L-Glutamic acid Loaded Hydrogels Through Enhanced Collagen Deposition and Angiogenesis: An In Vivo Study. Scientific Reports, 2017, 7, 10701.	1.6	81
3	An investigation of konjac glucomannan-keratin hydrogel scaffold loaded with Avena sativa extracts for diabetic wound healing. Colloids and Surfaces B: Biointerfaces, 2018, 165, 92-102.	2.5	69
4	Reduced graphene oxide-loaded nanocomposite scaffolds for enhancing angiogenesis in tissue engineering applications. Royal Society Open Science, 2018, 5, 172017.	1.1	60
5	Morin incorporated polysaccharide–protein (psyllium–keratin) hydrogel scaffolds accelerate diabetic wound healing in Wistar rats. RSC Advances, 2018, 8, 2305-2314.	1.7	49
6	Biomimetic hydrogel loaded with silk and <scp>l</scp> â€proline for tissue engineering and wound healing applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 1401-1408.	1.6	48
7	Mechanistic Study on the Antibacterial Activity of Self-Assembled Poly(aryl ether)-Based Amphiphilic Dendrimers. ACS Applied Bio Materials, 2019, 2, 3212-3224.	2.3	34
8	Fabrication of chitosan/gallic acid 3D microporous scaffold for tissue engineering applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 750-760.	1.6	32
9	Proteome analysis to assess physiological changes inEscherichia coli grown under glucose-limited fed-batch conditions. Biotechnology and Bioengineering, 2005, 92, 384-392.	1.7	31
10	Mechanical characterization of highâ€performance graphene oxide incorporated aligned fibroporous poly(carbonate urethane) membrane for potential biomedical applications. Journal of Applied Polymer Science, 2015, 132, .	1.3	31
11	Differential Adhesive and Bioactive Properties of the Polymeric Surface Coated with Graphene Oxide Thin Film. ACS Applied Materials & Interfaces, 2017, 9, 4498-4508.	4.0	30
12	Design and evaluation of Konjac glucomannan-based bioactive interpenetrating network (IPN) scaffolds for engineering vascularized bone tissues. International Journal of Biological Macromolecules, 2020, 143, 30-40.	3.6	30
13	Analysis of functionalized polyethylene terephthalate with immobilized NTPDase and cysteine. Acta Biomaterialia, 2009, 5, 3382-3393.	4.1	29
14	Nanohybrid-Reinforced Gelatin-Ureidopyrimidinone-Based Self-healing Injectable Hydrogels for Tissue Engineering Applications. ACS Applied Bio Materials, 2021, 4, 5362-5377.	2.3	22
15	A comparative study of polyethylene terephthalate surface carboxylation techniques: Characterization, in vitro haemocompatibility and endothelialization. Reactive and Functional Polymers, 2018, 122, 22-32.	2.0	21
16	Isabgol–silk fibroin 3D composite scaffolds as an effective dermal substitute for cutaneous wound healing in rats. RSC Advances, 2016, 6, 73617-73626.	1.7	17
17	Effect of Surface Finish on Wettability and Bacterial Adhesion of Micromachined Biomaterials. Biotribology, 2019, 18, 100095.	0.9	16
18	Synthesis of cyclodextrin-derived star poly(N-vinylpyrrolidone)/poly(lactic-co-glycolide) supramolecular micelles via host-guest interaction for delivery of doxorubicin. Polymer, 2021, 214, 123243.	1.8	16

Vignesh Muthuvijayan

#	Article	IF	CITATIONS
19	In vitro study of a glucose attached poly(aryl ether) dendron based gel as a drug carrier for a local anaesthetic. New Journal of Chemistry, 2017, 41, 7453-7462.	1.4	15
20	In silico reconstruction of nutrient-sensing signal transduction pathways in Aspergillus nidulans. In Silico Biology, 2004, 4, 605-31.	0.4	14
21	Immobilization of hyaluronic acid from Lactococcus lactis on polyethylene terephthalate for improved biocompatibility and drug release. Carbohydrate Polymers, 2019, 206, 132-140.	5.1	13
22	Evaluating the inherent osteogenic and angiogenic potential of mesoporous silica nanoparticles to augment vascularized bone tissue formation. Microporous and Mesoporous Materials, 2021, 311, 110687.	2.2	13
23	Accelerated Outgrowth of Neurites on Graphene Oxide-Based Hybrid Electrospun Fibro-Porous Polymeric Substrates. ACS Applied Bio Materials, 2020, 3, 2160-2169.	2.3	12
24	Facile, shear-induced, rapid formation of stable gels of chitosan through <i>in situ</i> generation of colloidal metal salts. Chemical Communications, 2018, 54, 11582-11585.	2.2	10
25	Studies on Encapsulation of Bovine Serum Albumin, Lysozyme and Insulin Through Coaxial Electrospinning. Journal of Biomaterials and Tissue Engineering, 2013, 3, 669-672.	0.0	10
26	Screening and selection of camptothecin producing endophytes from Nothapodytes nimmoniana. Scientific Reports, 2021, 11, 11205.	1.6	8
27	Self-Assembled Inhalable Immunomodulatory Silk Fibroin Nanocarriers for Enhanced Drug Loading and Intracellular Antibacterial Activity. ACS Biomaterials Science and Engineering, 2022, 8, 708-721.	2.6	8
28	Silanization induced inherent strain in graphene based filler influencing mechanical properties of polycarbonate urethane nanocomposite membranes. RSC Advances, 2016, 6, 104235-104245.	1.7	5
29	Modular amphiphilic poly(aryl ether)-based supramolecular nanomicelles: an efficient endocytic drug carrier. Chemical Communications, 2021, 57, 12695-12698.	2.2	4
30	Cysteine immobilisation on the polyethylene terephthalate surfaces and its effect on the haemocompatibility. Scientific Reports, 2019, 9, 16694.	1.6	3
31	Durable polymeric <i>N</i> -halamine functionalized stainless steel surface for improved antibacterial and anti-biofilm activity. Materials Advances, 2021, 2, 1090-1098.	2.6	3
32	Surface Engineering Approaches for Controlling Biofilms and Wound Infections. ACS Symposium Series, 2019, , 101-123.	0.5	2
33	Role of hydrophobicity in tuning the intracellular uptake of dendron-based fluorophores for in vitro metal ion sensing. Colloids and Surfaces B: Biointerfaces, 2019, 179, 180-189.	2.5	2
34	Gelatin grafted poly(<scp>D,L</scp> â€ <scp>lactide</scp>) as an inhibitor of protein aggregation: An <scp><i>in vitro</i></scp> case study. Biopolymers, 2020, 111, e23383.	1.2	1
35	Kinetic study of NTPDase immobilization and its effect of haemocompatibility on polyethylene terephthalate. Journal of Biomaterials Science, Polymer Edition, 2019, 30, 437-449.	1.9	0
36	Biomaterials for Soft Tissue Engineering: Concepts, Methods, and Applications. , 2021, , 381-422.		0