
Francine Z Marques

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9536887/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-Fiber Diet and Acetate Supplementation Change the Gut Microbiota and Prevent the Development of Hypertension and Heart Failure in Hypertensive Mice. Circulation, 2017, 135, 964-977.	1.6	695
2	Beyond gut feelings: how the gut microbiota regulates blood pressure. Nature Reviews Cardiology, 2018, 15, 20-32.	6.1	287
3	Gene Expression Profiling Reveals Renin mRNA Overexpression in Human Hypertensive Kidneys and a Role for MicroRNAs. Hypertension, 2011, 58, 1093-1098.	1.3	208
4	Deficiency of Prebiotic Fiber and Insufficient Signaling Through Gut Metabolite-Sensing Receptors Leads to Cardiovascular Disease. Circulation, 2020, 141, 1393-1403.	1.6	176
5	Reporting guidelines for human microbiome research: the STORMS checklist. Nature Medicine, 2021, 27, 1885-1892.	15.2	170
6	The transcardiac gradient of cardioâ€ <scp>microRNAs</scp> in the failing heart. European Journal of Heart Failure, 2016, 18, 1000-1008.	2.9	151
7	Resveratrol: Cellular actions of a potent natural chemical that confers a diversity of health benefits. International Journal of Biochemistry and Cell Biology, 2009, 41, 2125-2128.	1.2	141
8	Exercise: Putting Action into Our Epigenome. Sports Medicine, 2014, 44, 189-209.	3.1	105
9	MAOA-uVNTR polymorphism in a Brazilian sample: Further support for the association with impulsive behaviors and alcohol dependence. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2006, 141B, 305-308.	1.1	94
10	Acute Exercise Leads to Regulation of Telomere-Associated Genes and MicroRNA Expression in Immune Cells. PLoS ONE, 2014, 9, e92088.	1.1	88
11	Longer Leukocyte Telomeres Are Associated with Ultra-Endurance Exercise Independent of Cardiovascular Risk Factors. PLoS ONE, 2013, 8, e69377.	1.1	84
12	Microbial Peer Pressure. Hypertension, 2020, 76, 1674-1687.	1.3	77
13	A Novel Interaction Between Sympathetic Overactivity and Aberrant Regulation of Renin by miR-181a in BPH/2J Genetically Hypertensive Mice. Hypertension, 2013, 62, 775-781.	1.3	72
14	Changes in the leukocyte methylome and its effect on cardiovascular-related genes after exercise. Journal of Applied Physiology, 2015, 118, 475-488.	1.2	67
15	Gut Microbiota and Their Metabolites in Stroke: A Double-Edged Sword. Stroke, 2022, 53, 1788-1801.	1.0	62
16	Experimental and Human Evidence for Lipocalinâ€2 (Neutrophil Gelatinaseâ€Associated Lipocalin [NGAL]) in the Development of Cardiac Hypertrophy and Heart Failure. Journal of the American Heart Association, 2017, 6, .	1.6	59
17	The Gut Microbiome of Heart Failure With Preserved Ejection Fraction. Journal of the American Heart Association, 2021, 10, e020654.	1.6	59
18	The effect of diet on hypertensive pathology: is there a link via gut microbiota-driven immunometabolism?. Cardiovascular Research, 2019, 115, 1435-1447.	1.8	58

#	Article	IF	CITATIONS
19	Meta-Analysis of Genome-Wide Gene Expression Differences in Onset and Maintenance Phases of Genetic Hypertension. Hypertension, 2010, 56, 319-324.	1.3	56
20	Epigenetic changes in leukocytes after 8Âweeks of resistance exercise training. European Journal of Applied Physiology, 2016, 116, 1245-1253.	1.2	56
21	Guidelines for Transparency on Gut Microbiome Studies in Essential and Experimental Hypertension. Hypertension, 2019, 74, 1279-1293.	1.3	54
22	Molecular characterization of renin-angiotensin system components in human intrauterine tissues and fetal membranes from vaginal delivery and cesarean section. Placenta, 2011, 32, 214-221.	0.7	51
23	Small molecules, big effects: the role of microRNAs in regulation of cardiomyocyte death. Cell Death and Disease, 2014, 5, e1325-e1325.	2.7	50
24	Signatures of miR-181a on the Renal Transcriptome and Blood Pressure. Molecular Medicine, 2015, 21, 739-748.	1.9	48
25	Fetal Sex Affects Expression of Renin-Angiotensin System Components in Term Human Decidua. Endocrinology, 2012, 153, 462-468.	1.4	45
26	The role of the gut microbiome in sex differences in arterial pressure. Biology of Sex Differences, 2019, 10, 22.	1.8	44
27	The gut microbiota and blood pressure in experimental models. Current Opinion in Nephrology and Hypertension, 2019, 28, 97-104.	1.0	44
28	Essential Hypertension Is Associated With Changes in Gut Microbial Metabolic Pathways: A Multisite Analysis of Ambulatory Blood Pressure. Hypertension, 2021, 78, 804-815.	1.3	42
29	Polymorphisms in the DBH and DRD2 gene regions and smoking behavior. European Archives of Psychiatry and Clinical Neuroscience, 2006, 256, 93-97.	1.8	39
30	The emerging role of non-coding RNA in essential hypertension and blood pressure regulation. Journal of Human Hypertension, 2015, 29, 459-467.	1.0	38
31	A polymorphism in the norepinephrine transporter gene is associated with affective and cardiovascular disease through a microRNA mechanism. Molecular Psychiatry, 2017, 22, 134-141.	4.1	38
32	Leukocyte telomere length variation due to DNA extraction method. BMC Research Notes, 2014, 7, 877.	0.6	37
33	Resveratrol, by Modulating RNA Processing Factor Levels, Can Influence the Alternative Splicing of Pre-mRNAs. PLoS ONE, 2011, 6, e28926.	1.1	34
34	microRNAs in Essential Hypertension and Blood Pressure Regulation. Advances in Experimental Medicine and Biology, 2015, 888, 215-235.	0.8	30
35	Global identification of the genes and pathways differentially expressed in hypothalamus in early and established neurogenic hypertension. Physiological Genomics, 2011, 43, 766-771.	1.0	28
36	Diet-related gut microbial metabolites and sensing in hypertension. Journal of Human Hypertension, 2021, 35, 162-169.	1.0	27

#	Article	IF	CITATIONS
37	The molecular basis of longevity, and clinical implications. Maturitas, 2010, 65, 87-91.	1.0	26
38	Genes Influencing Circadian Differences in Blood Pressure in Hypertensive Mice. PLoS ONE, 2011, 6, e19203.	1.1	26
39	Dietary Interventions Reduce Traditional and Novel Cardiovascular Risk Markers by Altering the Gut Microbiome and Their Metabolites. Frontiers in Cardiovascular Medicine, 2021, 8, 691564.	1.1	25
40	Rodent models of hypertension. British Journal of Pharmacology, 2022, 179, 918-937.	2.7	25
41	Influence of the serotonin transporter gene on comorbid disorders among alcohol-dependent individuals. Psychiatric Genetics, 2006, 16, 125-131.	0.6	24
42	Response to methylphenidate is not influenced by DAT1 polymorphisms in a sample of Brazilian adult patients with ADHD. Journal of Neural Transmission, 2010, 117, 269-276.	1.4	24
43	Is there a role for rare variants in DRD4 gene in the susceptibility for ADHD? Searching for an effect of allelic heterogeneity. Molecular Psychiatry, 2012, 17, 520-526.	4.1	24
44	Further evidence for the association between a polymorphism in the promoter region of SLC6A3/DAT1 and ADHD: findings from a sample of adults. European Archives of Psychiatry and Clinical Neuroscience, 2014, 264, 401-408.	1.8	24
45	Serotonin transporter gene polymorphism and the phenotypic heterogeneity of adult ADHD. Journal of Neural Transmission, 2007, 114, 1631-1636.	1.4	23
46	Measurement of absolute copy number variation reveals association with essential hypertension. BMC Medical Genomics, 2014, 7, 44.	0.7	22
47	Mechanisms Responsible for Genetic Hypertension in Schlager BPH/2 Mice. Frontiers in Physiology, 2019, 10, 1311.	1.3	22
48	Manipulating Microbiota to Treat Atopic Dermatitis: Functions and Therapies. Pathogens, 2022, 11, 642.	1.2	22
49	Circulating microRNAs, Vascular Risk, and Physical Activity in Spinal Cord-Injured Subjects. Journal of Neurotrauma, 2019, 36, 845-852.	1.7	21
50	Characterization of Cardiac Sympathetic Nervous System and Inflammatory Activation in HFpEF Patients. JACC Basic To Translational Science, 2022, 7, 116-127.	1.9	20
51	ADRA2A polymorphisms and ADHD in adults: Possible mediating effect of personality. Psychiatry Research, 2011, 186, 345-350.	1.7	19
52	A polymorphism in the noradrenaline transporter gene is associated with increased blood pressure in patients with resistant hypertension. Journal of Hypertension, 2018, 36, 1571-1577.	0.3	19
53	Regulation of the human placental (pro)renin receptor-prorenin-angiotensin system by microRNAs. Molecular Human Reproduction, 2018, 24, 453-464.	1.3	19
54	The Emerging Role of Gut Dysbiosis in Cardio-metabolic Risk Factors for Heart Failure. Current Hypertension Reports, 2020, 22, 38.	1.5	19

#	Article	IF	CITATIONS
55	Tobacco smoking and the ADRA2A C-1291G polymorphism. Journal of Neural Transmission, 2007, 114, 1503-1506.	1.4	17
56	Microbial Interventions to Control and Reduce Blood Pressure in Australia (MICRoBIA): rationale and design of a double-blinded randomised cross-over placebo controlled trial. Trials, 2021, 22, 496.	0.7	17
57	Missing Heritability of Hypertension and Our Microbiome. Circulation, 2018, 138, 1381-1383.	1.6	15
58	How Dietary Fibre, Acting via the Gut Microbiome, Lowers Blood Pressure. Current Hypertension Reports, 2022, 24, 509-521.	1.5	15
59	Telomere dynamics during aging in polygenic left ventricular hypertrophy. Physiological Genomics, 2016, 48, 42-49.	1.0	14
60	Renal nerves contribute to hypertension in Schlager BPH/2J mice. Hypertension Research, 2019, 42, 306-318.	1.5	13
61	The Gut Microbiota and Their Metabolites in Human Arterial Stiffness. Heart Lung and Circulation, 2021, 30, 1716-1725.	0.2	12
62	Hormesis as a Pro-Healthy Aging Intervention in Human Beings?. Dose-Response, 2010, 8, dose-response.0.	0.7	11
63	Neural suppression of miRNA-181a in the kidney elevates renin expression and exacerbates hypertension in Schlager mice. Hypertension Research, 2020, 43, 1152-1164.	1.5	11
64	Association Between the Gut Microbiome and Their Metabolites With Human Blood Pressure Variability. Hypertension, 2022, 79, 1690-1701.	1.3	11
65	Lack of Strategic Funding and Long-Term Job Security Threaten to Have Profound Effects on Cardiovascular Researcher Retention in Australia. Heart Lung and Circulation, 2020, 29, 1588-1595.	0.2	10
66	The GNB3 C825T polymorphism and depression among subjects with alcohol dependence. Journal of Neural Transmission, 2007, 114, 469-472.	1.4	9
67	Neurogenic Hypertension: Revelations from Genome-Wide Gene Expression Profiling. Current Hypertension Reports, 2012, 14, 485-491.	1.5	9
68	Renal ACE2 (Angiotensin-Converting Enzyme 2) Expression Is Modulated by Dietary Fiber Intake, Gut Microbiota, and Their Metabolites. Hypertension, 2021, 77, e53-e55.	1.3	9
69	N-Acetylcysteine AttenuatesÂthe Development of Renal Fibrosis in Transgenic Mice with Dilated Cardiomyopathy. Scientific Reports, 2017, 7, 17718.	1.6	8
70	Manipulation of the gut microbiota by the use of prebiotic fibre does not override a genetic predisposition to heart failure. Scientific Reports, 2020, 10, 17919.	1.6	8
71	MicroRNA-132 may be associated with blood pressure and liver steatosis—preliminary observations in observations in observations in observations in observations in state individuals. Journal of Human Hypertension, 2022, 36, 911-916.	1.0	8
72	Commentary on Resveratrol and Hormesis: Resveratrol—a hormetic marvel in waiting?. Human and Experimental Toxicology, 2010, 29, 1026-1028.	1.1	7

Francine Z Marques

#	Article	IF	CITATIONS
73	Positive allosteric modulation of GABAA receptors attenuates high blood pressure in Schlager hypertensive mice. Journal of Hypertension, 2017, 35, 546-557.	0.3	7
74	Circadian Differences in the Contribution of the Brain Renin-Angiotensin System in Genetically Hypertensive Mice. Frontiers in Physiology, 2018, 9, 231.	1.3	7
75	Impact, Strategies, and Opportunities for Early and Midcareer Cardiovascular Researchers During the COVID-19 Pandemic. Circulation, 2020, 141, 1838-1840.	1.6	7
76	Plasma lipocalin-2/NGAL is stable over 12Âweeks and is not modulated by exercise or dieting. Scientific Reports, 2021, 11, 4056.	1.6	7
77	Population-Based Gut Microbiome Associations With Hypertension. Circulation Research, 2018, 123, 1185-1187.	2.0	6
78	Age-Related Differential Structural and Transcriptomic Responses in the Hypertensive Heart. Frontiers in Physiology, 2018, 9, 817.	1.3	6
79	A roadmap of strategies to support cardiovascular researchers: from policy to practice. Nature Reviews Cardiology, 2022, 19, 765-777.	6.1	6
80	Tripartite motif-containing 55 identified as functional candidate for spontaneous cardiac hypertrophy in the rat locus cardiac mass 22. Journal of Hypertension, 2016, 34, 950-958.	0.3	5
81	Involvement of human monogenic cardiomyopathy genes in experimental polygenic cardiac hypertrophy. Physiological Genomics, 2018, 50, 680-687.	1.0	5
82	Don't Take It With a Pinch of Salt. Circulation Research, 2020, 126, 854-856.	2.0	5
83	Fetal growth restriction shortens cardiac telomere length, but this is attenuated by exercise in early life. Physiological Genomics, 2018, 50, 956-963.	1.0	4
84	Letter by Marques and Morris Regarding Article, "Signature MicroRNA Expression Profile of Essential Hypertension and Its Novel Link to Human Cytomegalovirus Infection― Circulation, 2012, 125, e337; author reply e338-9.	1.6	3
85	Deficiency of MicroRNA-181a Results in Transcriptome-Wide Cell-Specific Changes in the Kidney and Increases Blood Pressure. Hypertension, 2021, 78, 1322-1334.	1.3	3
86	The conundrum of the gut microbiome and blood pressure: the importance of studying sex and ethnicity. European Heart Journal, 2020, 41, 4268-4270.	1.0	2
87	Genetic mechanisms of vascular and renal damage. Journal of Hypertension, 2013, 31, 2128-2129.	0.3	1
88	Across the globe in 4 months. Journal of Hypertension, 2015, 33, 891-893.	0.3	1
89	ISH NIA OS-01 THE microRNA miR-19a-3p BINDS TO A POLYMORPHISM IN THE GENE FOR THE NORADRENALINE TRANSPORTER AND MAY INCREASE THE RISK OF CARDIOVASCULAR AND PSYCHIATRIC DISEASE. Journal of Hypertension, 2016, 34, e42.	0.3	1
90	Highlights from the International Society of Hypertension's New Investigators Network during 2019. Journal of Hypertension, 2020, 38, 968-973.	0.3	1

#	Article	IF	CITATIONS
91	Gut Microbiota: Friends or Foes for Blood Pressure-Lowering Drugs. Hypertension, 2022, 79, 1602-1604.	1.3	1
92	Leukocyte Epigenetic Changes After Four Weeks Of Sprint Interval Training (SIT). Medicine and Science in Sports and Exercise, 2015, 47, 875.	0.2	0
93	[PS 01-07] THE EFFECT OF GENES INVOLVED IN MONOGENIC HUMAN CARDIOMYOPATHIES IN A POLYGENIC MODEL OF CARDIAC HYPERTROPHY. Journal of Hypertension, 2016, 34, e98.	0.3	Ο
94	MPS 13-02 DIETARY FIBRE INTAKE PREVENTS HYPERTENSION AND IMPROVES RENAL FUNCTION IN A MINERALOCORTICOID-EXCESS MODEL. Journal of Hypertension, 2016, 34, e408.	0.3	0
95	Pharmacogenetics of the Androgen Metabolic Pathway. , 2010, , 109-121.		Ο
96	Diurnal difference in sympathetic stimulation and microRNA regulation of renin in Schlager hypertensive mice. FASEB Journal, 2013, 27, 695.13.	0.2	0
97	Hypotensive Effects of Ganaxolone are Associated with an Upregulation of GABA _A Receptor Subunit Expression in Male Hypertensive Schlager Mice. FASEB Journal, 2020, 34, 1-1.	0.2	Ο
98	Supporting cardiovascular researchers takes a village but it starts with us. European Heart Journal, 0, , .	1.0	0