Krzysztof PaÅ,ka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9536632/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Porous Titanium Implants: A Review. Advanced Engineering Materials, 2018, 20, 1700648.	1.6	173
2	Biomedical potential of chitosan/HA and chitosan/β-1,3-glucan/HA biomaterials as scaffolds for bone regeneration — A comparative study. Materials Science and Engineering C, 2016, 58, 891-899.	3.8	58
3	In vitro studies of nanosilver-doped titanium implants for oral and maxillofacial surgery. International Journal of Nanomedicine, 2017, Volume 12, 4285-4297.	3.3	57
4	Nanomaterials in dentistry: a cornerstone or a black box?. Nanomedicine, 2018, 13, 639-667.	1.7	44
5	Superabsorbent curdlan-based foam dressings with typical hydrocolloids properties for highly exuding wound management. Materials Science and Engineering C, 2021, 124, 112068.	3.8	38
6	Elastic and biodegradable chitosan/agarose film revealing slightly acidic pH for potential applications in regenerative medicine as artificial skin graft. International Journal of Biological Macromolecules, 2020, 164, 172-183.	3.6	36
7	Fluorapatite ceramics for bone tissue regeneration: Synthesis, characterization and assessment of biomedical potential. Materials Science and Engineering C, 2020, 116, 111211.	3.8	34
8	Chitosan/β-1,3-glucan/calcium phosphate ceramics composites—Novel cell scaffolds for bone tissue engineering application. Journal of Biotechnology, 2014, 182-183, 46-53.	1.9	33
9	Micro-CT analysis and mechanical properties of Ti spherical and polyhedral void composites made with saccharose as a space holder material. Materials Characterization, 2015, 100, 13-20.	1.9	33
10	Novel synthesis method combining a foaming agent with freeze-drying to obtain hybrid highly macroporous bone scaffolds. Journal of Materials Science and Technology, 2020, 43, 52-63.	5.6	33
11	Development and Optimization of the Novel Fabrication Method of Highly Macroporous Chitosan/Agarose/Nanohydroxyapatite Bone Scaffold for Potential Regenerative Medicine Applications. Biomolecules, 2019, 9, 434.	1.8	27
12	Polydopamine-coated curdlan hydrogel as a potential carrier of free amino group-containing molecules. Carbohydrate Polymers, 2021, 256, 117524.	5.1	21
13	Highly Porous and Superabsorbent Biomaterial Made of Marine-Derived Polysaccharides and Ascorbic Acid as an Optimal Dressing for Exuding Wound Management. Materials, 2021, 14, 1211.	1.3	21
14	Finite element analysis of thermo-mechanical loaded teeth. Computational Materials Science, 2012, 64, 289-294.	1.4	20
15	Curdlan-Based Hydrogels for Potential Application as Dressings for Promotion of Skin Wound Healing—Preliminary In Vitro Studies. Materials, 2021, 14, 2344.	1.3	20
16	Compression Behavior of Ti Foams with Spherical and Polyhedral Pores. Advanced Engineering Materials, 2016, 18, 1511-1518.	1.6	15
17	Porous Curdlan-Based Hydrogels Modified with Copper Ions as Potential Dressings for Prevention and Management of Bacterial Wound Infection—An In Vitro Assessment. Polymers, 2020, 12, 1893.	2.0	15
18	New method for the fabrication of highly osteoconductive βâ€1,3â€glucan/HA scaffold for bone tissue engineering: Structural, mechanical, and biological characterization. Journal of Biomedical Materials Research - Part A, 2016, 104, 2528-2536.	2.1	11

Krzysztof PaÅ,ka

#	Article	IF	CITATIONS
19	Ion-exchanging dialysis as an effective method for protein entrapment in curdlan hydrogel. Materials Science and Engineering C, 2019, 105, 110025.	3.8	11
20	New approach in evaluation of ceramic-polymer composite bioactivity and biocompatibility. Analytical and Bioanalytical Chemistry, 2017, 409, 5747-5755.	1.9	10
21	Highly Porous Fluorapatite/β-1,3-Glucan Composite for Bone Tissue Regeneration: Characterization and In-Vitro Assessment of Biomedical Potential. International Journal of Molecular Sciences, 2021, 22, 10414.	1.8	9
22	Corrosion Properties of Ti Scaffolds Prepared with Sucrose as a Space Holder. Solid State Phenomena, 0, 227, 519-522.	0.3	8
23	New method for HA/glucan bone scaffold preparation reduces cytotoxic effect of highly reactive bioceramics. Materials Letters, 2017, 190, 213-216.	1.3	8
24	Behavior of new hydroxyapatite/glucan composite in human serum. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 2653-2664.	1.6	6
25	Efficient non-contact heat generation on flexible, ternary hydroxyapatite/curdlan/nanomagnetite hybrids for temperature controlled processes. Materials Science and Engineering C, 2021, 118, 111360.	3.8	6
26	Gypsum-related compensation of ions uptake by highly porous hydroxyapatite ceramics – Consequences for osteoblasts growth and proliferation. Materials Science and Engineering C, 2022, 133, 112665.	3.8	6
27	Improved Fracture Toughness and Conversion Degree of Resin-Based Dental Composites after Modification with Liquid Rubber. Materials, 2020, 13, 2704.	1.3	5
28	Do Ca2+-adsorbing ceramics reduce the release of calcium ions from gypsum-based biomaterials?. Materials Science and Engineering C, 2015, 47, 256-265.	3.8	4
29	The Effect of Liquid Rubber Addition on the Physicochemical Properties, Cytotoxicity, and Ability to Inhibit Biofilm Formation of Dental Composites. Materials, 2021, 14, 1704.	1.3	4
30	The influence of nitrogen ion implantation on microhardness of the Stellite 6 alloy. IOP Conference Series: Materials Science and Engineering, 2016, 148, 012046.	0.3	3
31	Microstructure and Interconnections Characteristics of Titanium Foam. Key Engineering Materials, 2016, 687, 25-32.	0.4	3
32	Effect of Recasted Material Addition on the Quality of Metal-Ceramic Bond: A Macro-, Micro-, and Nanostudy. Advances in Materials Science and Engineering, 2018, 2018, 1-8.	1.0	3
33	Unexpected reaction of new HAp/glucan composite to environmental acidification: Defect or advantage?. , 2017, 105, 1178-1190.		2
34	Ti6Al7Nb Alloy Laser Micromachining-Surface Properties. , 2018, , .		2
35	Analysis of the Carbon Content Effect on the Microstructure and Thermal Behavior of Cobalt-Matrix Dental Alloy. International Journal of Metalcasting, 2020, 14, 528-537.	1.5	1
36	Effect of artificial saliva on the mechanical properties of a polymer material reinforced with fiber, used in esthetic tooth restorations. Dental and Medical Problems, 2020, 57, 261-267.	0.7	1

#	Article	IF	CITATIONS
37	Nanomaterials in the Treatment and Prevention of Oral Infections. Environmental Chemistry for A Sustainable World, 2021, , 225-243.	0.3	0