Xing-Ming Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9536456/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	GADD34–PP1c recruited by Smad7 dephosphorylates TGFβ type I receptor. Journal of Cell Biology, 2004, 164, 291-300.	5.2	242
2	MicroRNA-183-5p Increases with Age in Bone-Derived Extracellular Vesicles, Suppresses Bone Marrow Stromal (Stem) Cell Proliferation, and Induces Stem Cell Senescence. Tissue Engineering - Part A, 2017, 23, 1231-1240.	3.1	182
3	Smad1 Interacts with Homeobox DNA-binding Proteins in Bone Morphogenetic Protein Signaling. Journal of Biological Chemistry, 1999, 274, 13711-13717.	3.4	161
4	Jab1 antagonizes TGFâ€Î² signaling by inducing Smad4 degradation. EMBO Reports, 2002, 3, 171-176.	4.5	155
5	Loss of myostatin (GDF8) function increases osteogenic differentiation of bone marrow-derived mesenchymal stem cells but the osteogenic effect is ablated with unloading. Bone, 2007, 40, 1544-1553.	2.9	146
6	ACTH protects against glucocorticoid-induced osteonecrosis of bone. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8782-8787.	7.1	134
7	Smad6 as a Transcriptional Corepressor. Journal of Biological Chemistry, 2000, 275, 8267-8270.	3.4	131
8	A glucocorticoidâ€induced leucineâ€zipper protein, GILZ, inhibits adipogenesis of mesenchymal cells. EMBO Reports, 2003, 4, 374-380.	4.5	125
9	Regulation of Mesenchymal Stem Cell Osteogenic Differentiation by Glucocorticoid-induced Leucine Zipper (GILZ). Journal of Biological Chemistry, 2008, 283, 4723-4729.	3.4	124
10	Smad1 Domains Interacting with Hoxc-8 Induce Osteoblast Differentiation. Journal of Biological Chemistry, 2000, 275, 1065-1072.	3.4	100
11	Age-Related Changes in the Osteogenic Differentiation Potential of Mouse Bone Marrow Stromal Cells. Journal of Bone and Mineral Research, 2008, 23, 1118-1128.	2.8	100
12	Transcriptional Mechanisms of Bone Morphogenetic Protein-induced Osteoprotegrin Gene Expression. Journal of Biological Chemistry, 2001, 276, 10119-10125.	3.4	96
13	Smad4 Protein Stability Is Regulated by Ubiquitin Ligase SCFβ-TrCP1. Journal of Biological Chemistry, 2004, 279, 14484-14487.	3.4	93
14	Kynurenine, a Tryptophan Metabolite That Accumulates With Age, Induces Bone Loss. Journal of Bone and Mineral Research, 2017, 32, 2182-2193.	2.8	89
15	Hoxa-9 Represses Transforming Growth Factor-Î ² -induced Osteopontin Gene Transcription. Journal of Biological Chemistry, 2001, 276, 850-855.	3.4	74
16	Stromal Cell-Derived Factor-1β Mediates Cell Survival through Enhancing Autophagy in Bone Marrow-Derived Mesenchymal Stem Cells. PLoS ONE, 2013, 8, e58207.	2.5	67
17	Impact of Clucose-Dependent Insulinotropic Peptide on Age-Induced Bone Loss. Journal of Bone and Mineral Research, 2008, 23, 536-543.	2.8	64
18	Glucocorticoidâ€induced leucine zipper (GILZ) mediates glucocorticoid action and inhibits inflammatory cytokineâ€induced COXâ€2 expression. Journal of Cellular Biochemistry, 2008, 103, 1760-1771.	2.6	62

XING-MING SHI

#	Article	IF	CITATIONS
19	Oxidation of the aromatic amino acids tryptophan and tyrosine disrupts their anabolic effects on bone marrow mesenchymal stem cells. Molecular and Cellular Endocrinology, 2015, 410, 87-96.	3.2	62
20	Effects of the activin A–myostatin–follistatin system on aging bone and muscle progenitor cells. Experimental Gerontology, 2013, 48, 290-297.	2.8	60
21	Kynurenine inhibits autophagy and promotes senescence in aged bone marrow mesenchymal stem cells through the aryl hydrocarbon receptor pathway. Experimental Gerontology, 2020, 130, 110805.	2.8	59
22	Swedish mutant APP suppresses osteoblast differentiation and causes osteoporotic deficit, which are ameliorated by N-acetyl-L-cysteine. Journal of Bone and Mineral Research, 2013, 28, 2122-2135.	2.8	54
23	Absence of Functional Leptin Receptor Isoforms in the POUND (Leprdb/lb) Mouse Is Associated with Muscle Atrophy and Altered Myoblast Proliferation and Differentiation. PLoS ONE, 2013, 8, e72330.	2.5	44
24	Stromal Cell-Derived Factor-1β Potentiates Bone Morphogenetic Protein-2-Stimulated Osteoinduction of Genetically Engineered Bone Marrow-Derived Mesenchymal Stem CellsIn Vitro. Tissue Engineering - Part A, 2013, 19, 1-13.	3.1	39
25	Impact of targeted PPARÎ ³ disruption on bone remodeling. Molecular and Cellular Endocrinology, 2015, 410, 27-34.	3.2	35
26	Amino acids as signaling molecules modulating bone turnover. Bone, 2018, 115, 15-24.	2.9	35
27	Role of Glucocorticoid-induced Leucine Zipper (GILZ) in Bone Acquisition. Journal of Biological Chemistry, 2014, 289, 19373-19382.	3.4	28
28	Kynurenine Promotes RANKL-Induced Osteoclastogenesis In Vitro by Activating the Aryl Hydrocarbon Receptor Pathway. International Journal of Molecular Sciences, 2020, 21, 7931.	4.1	25
29	Impact of Dietary Aromatic Amino Acids on Osteoclastic Activity. Calcified Tissue International, 2014, 95, 174-182.	3.1	24
30	Mesenchymal stem cell expression of SDF-1β synergizes with BMP-2 to augment cell-mediated healing of critical-sized mouse calvarial defects. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1806-1819.	2.7	23
31	Glucocorticoid-Induced Leucine Zipper (GILZ) Antagonizes TNF-α Inhibition of Mesenchymal Stem Cell Osteogenic Differentiation. PLoS ONE, 2012, 7, e31717.	2.5	23
32	Inhibition of Glycogen Synthase Kinase-3β Attenuates Glucocorticoid-Induced Suppression of Myogenic Differentiation In Vitro. PLoS ONE, 2014, 9, e105528.	2.5	20
33	Crosstalk between bone marrow-derived mesenchymal stem cells and regulatory T cells through a glucocorticoid-induced leucine zipper/developmental endothelial locus-1-dependent mechanism. FASEB Journal, 2015, 29, 3954-3963.	0.5	20
34	Aromatic Amino Acid Activation of Signaling Pathways in Bone Marrow Mesenchymal Stem Cells Depends on Oxygen Tension. PLoS ONE, 2014, 9, e91108.	2.5	17
35	Age-related increase of kynurenine enhances miR29b-1-5p to decrease both CXCL12 signaling and the epigenetic enzyme Hdac3 in bone marrow stromal cells. Bone Reports, 2020, 12, 100270.	0.4	17
36	Total Body Irradiation Is Permissive for Mesenchymal Stem Cell-Mediated New Bone Formation Following Local Transplantation. Tissue Engineering - Part A, 2014, 20, 3212-3227.	3.1	16

XING-MING SHI

#	Article	IF	CITATIONS
37	Inhibition of Fibroblast Activation in Uterine Leiomyoma by Components of Rhizoma Curcumae and Rhizoma Sparganii. Frontiers in Public Health, 2021, 9, 650022.	2.7	15
38	The status of glucocorticoid-induced leucine zipper protein in the salivary glands in Sjögren's syndrome: predictive and prognostic potentials. EPMA Journal, 2015, 7, 3.	6.1	14
39	Mesenchymal stem cell expression of stromal cellâ€derived factorâ€1β augments bone formation in a model of local regenerative therapy. Journal of Orthopaedic Research, 2015, 33, 174-184.	2.3	14
40	Transcriptional profiling of uterine leiomyoma rats treated by a traditional herb pair, Curcumae rhizoma and Sparganii rhizoma. Brazilian Journal of Medical and Biological Research, 2019, 52, e8132.	1.5	14
41	The glucocorticoid receptor in osteoprogenitors regulates bone mass and marrow fat. Journal of Endocrinology, 2019, 243, 27-42.	2.6	13
42	The role of GILZ in modulation of adaptive immunity in a murine model of myocardial infarction. Experimental and Molecular Pathology, 2017, 102, 408-414.	2.1	11
43	Deletion of PPAR ^{ĵ3} in Mesenchymal Lineage Cells Protects Against Aging-Induced Cortical Bone Loss in Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 826-834.	3.6	10
44	Picolinic acid, a tryptophan oxidation product, does not impact bone mineral density but increases marrow adiposity. Experimental Gerontology, 2020, 133, 110885.	2.8	10
45	Photobiomodulation has rejuvenating effects on aged bone marrow mesenchymal stem cells. Scientific Reports, 2021, 11, 13067.	3.3	10
46	Energy Balance, Myostatin, and GILZ: Factors Regulating Adipocyte Differentiation in Belly and Bone. PPAR Research, 2007, 2007, 1-12.	2.4	9
47	Age-associated changes in microRNAs affect the differentiation potential of human mesenchymal stem cells: Novel role of miR-29b-1-5p expression. Bone, 2021, 153, 116154.	2.9	9
48	Role of glucocorticoid-induced leucine zipper (GILZ) in inflammatory bone loss. PLoS ONE, 2017, 12, e0181133.	2.5	9
49	Deletion of protein kinase D1 in osteoprogenitor cells results in decreased osteogenesis inÂvitro and reduced bone mineral density inÂvivo. Molecular and Cellular Endocrinology, 2018, 461, 22-31.	3.2	8
50	The Glucocorticoid Receptor in Osterix-Expressing Cells Regulates Bone Mass, Bone Marrow Adipose Tissue, and Systemic Metabolism in Female Mice During Aging. Journal of Bone and Mineral Research, 2020, 37, 285-302.	2.8	8
51	Monitoring bone marrow-originated mesenchymal stem cell traffic to myocardial infarction sites using magnetic resonance imaging. Magnetic Resonance in Medicine, 2011, 65, 1430-1436.	3.0	7
52	Effects of matrix metalloproteinase-1 on the myogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro. Biochemical and Biophysical Research Communications, 2012, 428, 309-314.	2.1	7
53	Endogenous Glucocorticoid Signaling in the Regulation of Bone and Marrow Adiposity: Lessons from Metabolism and Cross Talk in Other Tissues. Current Osteoporosis Reports, 2019, 17, 438-445.	3.6	7
54	Differentially expressed genes in PPARÎ ³ -deficient MSCs. Molecular and Cellular Endocrinology, 2018, 471, 97-104.	3.2	6

XING-MING SHI

#	Article	IF	CITATIONS
55	A comparative study of bone marrow mesenchymal stem cell functionality in C57BL and mdx mice. Neuroscience Letters, 2012, 523, 139-144.	2.1	5
56	Ameliorative Effects of Component Chinese Medicine From Curcumae Rhizoma and Sparganii Rhizoma, a Traditional Herb Pair, on Uterine Leiomyoma in a Rat Model. Frontiers in Public Health, 2021, 9, 674357.	2.7	4
57	Deficiency of PPARÎ ³ in Bone Marrow Stromal Cells Does not Prevent High-Fat Diet-Induced Bone Deterioration in Mice. Journal of Nutrition, 2021, 151, 2697-2704.	2.9	4
58	TGF-β/BMP signaling in cartilage and bone cells. Current Opinion in Orthopaedics, 2002, 13, 368-374.	0.3	3
59	Deficiency of PPAR Gamma in Bone Marrow Stromal Cells Does Not Prevent High-Fat Diet-Induced Bone Deterioration in Mice. Current Developments in Nutrition, 2021, 5, 1200.	0.3	Ο
60	Effect of PPARÎ ³ Inhibition on Bone in Aged Animals. Innovation in Aging, 2020, 4, 124-124.	0.1	0