Katharina Lahl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9536087/publications.pdf

Version: 2024-02-01

40 papers 4,330 citations

28 h-index 289141 40 g-index

42 all docs 42 docs citations

42 times ranked 8055 citing authors

#	Article	IF	CITATIONS
1	Rotavirus-Induced Expansion of Antigen-Specific CD8 T Cells Does Not Require Signaling via TLR3, MyD88 or the Type I Interferon Receptor. Frontiers in Immunology, 2022, 13, 814491.	2.2	1
2	ADP-ribosylating adjuvant reveals plasticity in cDC1 cells that drive mucosal Th17 cell development and protection against influenza virus infection. Mucosal Immunology, 2022, 15, 745-761.	2.7	6
3	$\hat{l}\pm v\hat{l}^2$ 8 integrin-expression by BATF3-dependent dendritic cells facilitates early IgA responses to Rotavirus. Mucosal Immunology, 2021, 14, 53-67.	2.7	27
4	Rotavirus infection causes mesenteric lymph node hypertrophy independently of type I interferon or TNF $\hat{a}\in\hat{H}_{\pm}$ in mice. European Journal of Immunology, 2021, 51, 1143-1152.	1.6	3
5	Minor alterations in the intestinal microbiota composition upon Rotavirus infection do not affect susceptibility to DSS colitis. Scientific Reports, 2021, 11, 13485.	1.6	2
6	The C-terminal peptide of CCL21 drastically augments CCL21 activity through the dendritic cell lymph node homing receptor CCR7 by interaction with the receptor N-terminus. Cellular and Molecular Life Sciences, 2021, 78, 6963-6978.	2.4	11
7	Mononuclear phagocyte regulation by the transcription factor Blimpâ€1 in health and disease. Immunology, 2020, 161, 303-313.	2.0	8
8	Divergent T follicular helper cell requirement for IgA and IgE production to peanut during allergic sensitization. Science Immunology, 2020, 5, .	5 . 6	46
9	Migration of murine intestinal dendritic cell subsets upon intrinsic and extrinsic TLR3 stimulation. European Journal of Immunology, 2020, 50, 1525-1536.	1.6	10
10	Regulatory T Cells. , 2017, , 1377-1422.		0
10	Regulatory T Cells., 2017, , 1377-1422. Extraction and analysis of signatures from the Gene Expression Omnibus by the crowd. Nature Communications, 2016, 7, 12846.	5. 8	204
	Extraction and analysis of signatures from the Gene Expression Omnibus by the crowd. Nature	5.8 2.7	
11	Extraction and analysis of signatures from the Gene Expression Omnibus by the crowd. Nature Communications, 2016, 7, 12846. Generation and transcriptional programming of intestinal dendritic cells: essential role of retinoic		204
11 12	Extraction and analysis of signatures from the Gene Expression Omnibus by the crowd. Nature Communications, 2016, 7, 12846. Generation and transcriptional programming of intestinal dendritic cells: essential role of retinoic acid. Mucosal Immunology, 2016, 9, 183-193. Selective Expression of the MAPK Phosphatase Dusp9/MKP-4 in Mouse Plasmacytoid Dendritic Cells and	2.7	204 57
11 12 13	Extraction and analysis of signatures from the Gene Expression Omnibus by the crowd. Nature Communications, 2016, 7, 12846. Generation and transcriptional programming of intestinal dendritic cells: essential role of retinoic acid. Mucosal Immunology, 2016, 9, 183-193. Selective Expression of the MAPK Phosphatase Dusp9/MKP-4 in Mouse Plasmacytoid Dendritic Cells and Regulation of IFN-β Production. Journal of Immunology, 2015, 195, 1753-1762. Selective Treg reconstitution during lymphopenia normalizes DC costimulation and prevents	2.7	204 57 8
11 12 13	Extraction and analysis of signatures from the Gene Expression Omnibus by the crowd. Nature Communications, 2016, 7, 12846. Generation and transcriptional programming of intestinal dendritic cells: essential role of retinoic acid. Mucosal Immunology, 2016, 9, 183-193. Selective Expression of the MAPK Phosphatase Dusp9/MKP-4 in Mouse Plasmacytoid Dendritic Cells and Regulation of IFN-β Production. Journal of Immunology, 2015, 195, 1753-1762. Selective Treg reconstitution during lymphopenia normalizes DC costimulation and prevents graft-versus-host disease. Journal of Clinical Investigation, 2015, 125, 3627-3641. Comparative transcriptional and functional profiling defines conserved programs of intestinal DC	2.7 0.4 3.9	204 57 8 70
11 12 13 14	Extraction and analysis of signatures from the Gene Expression Omnibus by the crowd. Nature Communications, 2016, 7, 12846. Generation and transcriptional programming of intestinal dendritic cells: essential role of retinoic acid. Mucosal Immunology, 2016, 9, 183-193. Selective Expression of the MAPK Phosphatase Dusp9/MKP-4 in Mouse Plasmacytoid Dendritic Cells and Regulation of IFN-β Production. Journal of Immunology, 2015, 195, 1753-1762. Selective Treg reconstitution during lymphopenia normalizes DC costimulation and prevents graft-versus-host disease. Journal of Clinical Investigation, 2015, 125, 3627-3641. Comparative transcriptional and functional profiling defines conserved programs of intestinal DC differentiation in humans and mice. Nature Immunology, 2014, 15, 98-108. Orphan chemoattractant receptor GPR15 mediates dendritic epidermal Tâ€cell recruitment to the skin.	2.7 0.4 3.9	204 57 8 70 231

#	Article	IF	CITATIONS
19	Plasmacytoid dendritic cells promote rotavirus-induced human and murine B cell responses. Journal of Clinical Investigation, 2013, 123, 2464-2474.	3.9	99
20	Regulatory T Cells Selectively Preserve Immune Privilege of Self-Antigens during Viral Central Nervous System Infection. Journal of Immunology, 2012, 188, 3678-3685.	0.4	41
21	Plasmacytoid Dendritic Cells and Anti-Inflammatory Intestinal IgA Production. Inflammatory Bowel Diseases, 2012, 18, S108.	0.9	0
22	Plasmacytoid Dendritic Cells Transport Peripheral Antigens to the Thymus to Promote Central Tolerance. Immunity, 2012, 36, 438-450.	6.6	226
23	Foxp3+ Cells Control Th2 Responses in a Murine Model of Atopic Dermatitis. Journal of Investigative Dermatology, 2012, 132, 1672-1680.	0.3	58
24	The Temporal and Spatial Dynamics of Foxp3+ Treg Cell–Mediated Suppression during Contact Hypersensitivity Responses in a Murine Model. Journal of Investigative Dermatology, 2012, 132, 2744-2751.	0.3	37
25	In Vivo Depletion of FoxP3+ Tregs Using the DEREG Mouse Model. Methods in Molecular Biology, 2011, 707, 157-172.	0.4	136
26	An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation. Nature Immunology, 2011, 12, 1071-1077.	7.0	436
27	IL-7 Engages Multiple Mechanisms to Overcome Chronic Viral Infection and Limit Organ Pathology. Cell, 2011, 144, 601-613.	13.5	281
28	Repression of the genome organizer SATB1 in regulatory T cells is required for suppressive function and inhibition of effector differentiation. Nature Immunology, 2011, 12, 898-907.	7.0	179
29	CD8 ⁺ Foxp3 ⁺ T cells share developmental and phenotypic features with classical CD4 ⁺ Foxp3 ⁺ regulatory T cells but lack potent suppressive activity. European Journal of Immunology, 2011, 41, 716-725.	1.6	78
30	Foxp3-Mediated Suppression of CD95L Expression Confers Resistance to Activation-Induced Cell Death in Regulatory T Cells. Journal of Immunology, 2011, 187, 1684-1691.	0.4	49
31	Selective depletion of Foxp3 ⁺ Treg during sensitization phase aggravates experimental allergic airway inflammation. European Journal of Immunology, 2010, 40, 2259-2266.	1.6	43
32	Immunostimulatory RNA Blocks Suppression by Regulatory T Cells. Journal of Immunology, 2010, 184, 939-946.	0.4	55
33	FoxP3 ⁺ regulatory T cells essentially contribute to peripheral CD8 ⁺ T-cell tolerance induced by steady-state dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 199-203.	3.3	90
34	Selective Depletion of Foxp3+ Regulatory T Cells Improves Effective Therapeutic Vaccination against Established Melanoma. Cancer Research, 2010, 70, 7788-7799.	0.4	228
35	Nonfunctional Regulatory T Cells and Defective Control of Th2 Cytokine Production in Natural Scurfy Mutant Mice. Journal of Immunology, 2009, 183, 5662-5672.	0.4	67
36	Cutting Edge: Depletion of Foxp3+ Cells Leads to Induction of Autoimmunity by Specific Ablation of Regulatory T Cells in Genetically Targeted Mice. Journal of Immunology, 2009, 183, 7631-7634.	0.4	159

#	Article	IF	CITATIONS
37	Adjuvant IL-7 antagonizes multiple cellular and molecular inhibitory networks to enhance immunotherapies. Nature Medicine, 2009, 15, 528-536.	15.2	198
38	Circumvention of regulatory CD4 ⁺ T cell activity during crossâ€priming strongly enhances T cellâ€mediated immunity. European Journal of Immunology, 2008, 38, 1585-1597.	1.6	24
39	DC activated <i>via</i> dectinâ€1 convert Treg into ILâ€17 producers. European Journal of Immunology, 2008, 38, 3274-3281.	1.6	242
40	Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. Journal of Experimental Medicine, 2007, 204, 57-63.	4.2	807