
Ivan S Vasil'evskii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9535930/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photoluminescence of GaAs/AlGaAs quantum ring arrays. Semiconductors, 2015, 49, 638-643.	0.2	28
2	Electrical and structural properties of PHEMT heterostructures based on AlGaAs/InGaAs/AlGaAs and δdoped on two sides. Semiconductors, 2008, 42, 1084-1091.	0.2	25
3	Electron effective masses in an InGaAs quantum well with InAs and GaAs inserts. Semiconductor Science and Technology, 2012, 27, 035021.	1.0	24
4	Metamorphic InAlAs/InGaAs/InAlAs/GaAs HEMT heterostructures containing strained superlattices and inverse steps in the metamorphic buffer. Journal of Crystal Growth, 2013, 366, 55-60.	0.7	23
5	Experimental evaluation of stable long term operation of semiconductor magnetic sensors at ITER relevant environment. Nuclear Fusion, 2015, 55, 083006.	1.6	21
6	The effect of spacer-layer growth temperature on mobility in a two-dimensional electron gas in PHEMT structures. Semiconductors, 2006, 40, 1445-1449.	0.2	20
7	Effect of the built-in electric field on optical and electrical properties of AlGaAs/InGaAs/GaAs P-HEMT nanoheterostructures. Semiconductors, 2011, 45, 657-662.	0.2	19
8	Prospects of Using In-Containing Semiconductor Materials in Magnetic Field Sensors for Thermonuclear Reactor Magnetic Diagnostics. IEEE Transactions on Magnetics, 2013, 49, 50-53.	1.2	19
9	Electron mobility and effective mass in composite InGaAs quantum wells with InAs and GaAs nanoinserts. Semiconductors, 2012, 46, 484-490.	0.2	17
10	Terahertz-radiation generation and detection in low-temperature-grown GaAs epitaxial films on GaAs (100) and (111)A substrates. Semiconductors, 2017, 51, 503-508.	0.2	15
11	Electron transport and optical properties of shallow GaAs/InGaAs/GaAs quantum wells with a thin central AlAs barrier. Semiconductor Science and Technology, 2007, 22, 222-228.	1.0	12
12	Effect of (100) GaAs substrate misorientation on electrophysical parameters, structural properties and surface morphology of metamorphic HEMT nanoheterostructures InGaAs/InAlAs. Journal of Crystal Growth, 2014, 392, 11-19.	0.7	12
13	Specific features of the photoluminescence of HEMT nanoheterostructures containing a composite InAlAs/InGaAs/InAs/InGaAs/InAlAs quantum well. Semiconductors, 2015, 49, 234-241.	0.2	12
14	Structural and electrical properties of quantum wells with nanoscale InAs inserts in In y Al1 â^' y As/In x Ga1 â' x As heterostructures on InP substrates. Crystallography Reports, 2011, 56, 298-309.	0.1	11
15	Ge/GeSn heterostructures grown on Si (100) by molecular-beam epitaxy. Semiconductors, 2015, 49, 124-129.	0.2	11
16	Drift velocity of electrons in quantum wells in high electric fields. Semiconductors, 2009, 43, 458-462.	0.2	9
17	Interrelation of the construction of the metamorphic InAlAs/InGaAs nanoheterostructures with the InAs content in the active layer of 76–100% with their surface morphology and electrical properties. Semiconductors, 2011, 45, 1158-1163.	0.2	9
18	Effects of phonon confinement on high-electric field electron transport in an InGaAs/InAlAs quantum well with an inserted InAs barrier. Applied Physics A: Materials Science and Processing, 2012, 109, 233-237.	1.1	9

IVAN S VASIL'EVSKII

#	Article	IF	CITATIONS
19	Maximum drift velocity of electrons in selectively doped InAlAs/InGaAs/InAlAs heterostructures with InAs inserts. Semiconductors, 2013, 47, 372-375.	0.2	9
20	Thermal Stability of Ge/GeSn Nanostructures Grown by MBE on (001) Si/Ge Virtual Wafers. Physics Procedia, 2015, 72, 411-418.	1.2	9
21	Features of the diagnostics of metamorphic InAlAs/InGaAs/InAlAs nanoheterostructures by high-resolution X-ray diffraction in the ω-scanning mode. Semiconductors, 2016, 50, 559-565.	0.2	9
22	Study of new designs for the InAlAs metamorphic buffer on GaAs substrates with distributed compensation of elastic deformations. Semiconductors, 2013, 47, 997-1002.	0.2	8
23	Electrical and optical properties of near-surface AlGaAs/InGaAs/AlGaAs quantum wells with different quantum-well depths. Semiconductors, 2013, 47, 1203-1208.	0.2	8
24	Tunable configurational anisotropy of concave triangular nanomagnets. Journal of Applied Physics, 2016, 119, 233906.	1.1	8
25	The built-in electric field in P-HEMT heterostructures with near-surface quantum wells Al _x Ga _{1â^'x} As/In _y Ga _{1â^'y} As/GaAs. Journal of Physics: Conference Series, 2012, 345, 012015.	0.3	7
26	Increase of the electron mobility in HEMT heterostructures with composite spacers containing AlAs nanolayers. Semiconductors, 2014, 48, 1619-1625.	0.2	7
27	New Structure for Photoconductive Antennas Based on {LTG-GaAs/GaAs:Si} Superlattice on GaAs(111)A Substrate. Crystallography Reports, 2019, 64, 205-211.	0.1	7
28	Scattering and electron mobility in combination-doped HFET-structures AlGaAs/InGaAs/AlGaAs with high electron density. Semiconductors, 2011, 45, 1321-1326.	0.2	6
29	Electron transport in an In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As quantum well with a δ-Si doped barrier in high electric fields. Semiconductors, 2010, 44, 898-903.	0.2	5
30	Electron mobility and drift velocity in selectively doped InAlAs/InGaAs/InAlAs heterostructures. Semiconductors, 2011, 45, 1169-1172.	0.2	5
31	Persistent photoconductivity and electron mobility in In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As/InP quantum-well structures. Semiconductors, 2013, 47, 935-942.	0.2	5
32	Photoluminescence properties of modulation-doped In x Al1–x As/In y Ga1–y As/In x Al1–x As structures with strained inas and gaas nanoinserts in the quantum well. Semiconductors, 2015, 49, 1207-1217.	0.2	5
33	Electrophysical and structural properties of the composite quantum wells In _{0.52} Al _{0.48} As/In _{<i>x</i>} Ga _{1â^²<i>x</i>} As/In _{0.52with ultrathin InAs inserts. Journal of Materials Research, 2015, 30, 3020-3025.}	ıb ı.Al <sub< td=""><td>აე 48</td></sub<>	ა ე 48
34	Electron transport in coupled quantum wells with double-Sided doping. Semiconductors, 2003, 37, 686-691.	0.2	4
35	Interband optical transitions in GaAs modulation-doped quantum wells: photoreflectance experiment and self-consistent calculations. Semiconductor Science and Technology, 2006, 21, 462-466.	1.0	4
36	Study of the influence of strained superlattices introduced into a metamorphic buffer on the electrophysical properties and the atomic structure of InAlAs/InGaAs MHEMT heterostructures. Semiconductors, 2013, 47, 532-537.	0.2	4

Ivan S Vasil'evskii

#	Article	IF	CITATIONS
37	Application of reactor neutrons to the investigation of the radiation resistance of semiconductor materials of Group III–V and sensors. Physics of the Solid State, 2014, 56, 157-160.	0.2	4
38	Application of photoluminescence spectroscopy to studies of In0.38Al0.62As/In0.38Ga0.62As/GaAs metamorphic nanoheterostructures. Semiconductors, 2014, 48, 883-890.	0.2	4
39	Electron mobilities in isomorphic In0.53Ga0.47As quantum wells on InP substrates. Journal of Experimental and Theoretical Physics, 2013, 116, 755-759.	0.2	3
40	Measurement of the concentration of 2D electrons in δ-doped InGaAs/GaAs pseudomorphic transistor structures using the photoluminescence spectroscopy. Journal of Communications Technology and Electronics, 2013, 58, 243-249.	0.2	3
41	Features of diffusion processes during drop epitaxy of quantum rings. Bulletin of the Lebedev Physics Institute, 2014, 41, 243-246.	0.1	3
42	Sn-enriched Ge/GeSn nanostructures grown by MBE on (001) GaAs and Si wafers. Semiconductors, 2015, 49, 1564-1570.	0.2	3
43	Temperature dependence of photoluminescence of GaAs/AlGaAs quantum rings. Journal of Physics: Conference Series, 2015, 643, 012073.	0.3	3
44	Quantum Hall effect in n-InGaAs/InAlAs metamorphic nanoheterostructures with high InAs content. Journal of Magnetism and Magnetic Materials, 2017, 440, 10-12.	1.0	3
45	Electron Transport in Modulation-Doped InAlAs/InGaAs/InAlAs Heterostructures in High Electric Fields. Acta Physica Polonica A, 2011, 119, 170-172.	0.2	3
46	Influence of state hybridization on low-temperature electron transport in shallow quantum wells. Journal of Experimental and Theoretical Physics, 2007, 105, 174-176.	0.2	2
47	Structural and electrical properties of metamorphic nanoheterostructures with a high InAs content (37–100%) grown on GaAs and InP substrates. Crystallography Reports, 2011, 56, 875-879.	0.1	2
48	Structural and electrophysical analysis of MHEMT In0.70Al0.30As/In0.75Ga0.25As nanoheterostructures with different strain distributions in metamorphic buffer. Crystallography Reports, 2012, 57, 841-847.	0.1	2
49	Technology and electronic properties of PHEMT AlGaAs/In y(z)Ga1 â^' y(z)As/GaAs compositionally graded quantum wells. Semiconductors, 2014, 48, 1226-1232.	0.2	2
50	Eigenstate modelling in arbitrary shaped nanostructres with gradual heterointerfaces. Journal of Physics: Conference Series, 2016, 690, 012016.	0.3	2
51	Pseudomorphic HEMT quantum well AlGaAs/InGaAs/GaAs with AlAs:δ-Si donor layer. IOP Conference Series: Materials Science and Engineering, 2016, 151, 012037.	0.3	2
52	Plasmon–exciton interaction strongly increases the efficiency of a quantum dot-based near-infrared photodetector operating in the two-photon absorption mode under normal conditions. Nanoscale, 2021, 13, 19929-19935.	2.8	2
53	<title>Structural and electrophysical properties of pseudomorphic GaAs/InGaAs/GaAs quantum wells:
effect of thin central AlAs barrier</title> . , 2006, , .		1
54	Effect of the spacer growth temperature on the electrophysical and structural properties of PHEMTs. Technical Physics, 2007, 52, 440-445.	0.2	1

#	Article	IF	CITATIONS
55	Effect of GaAs (100) substrate misorientation on the electrical parameters and surface morphology of metamorphic In0.7Al0.3As/In0.75Ga0.25As/In0.7Al0.3As HEMT nanoheterostructures. Semiconductors, 2014, 48, 63-68.	0.2	1
56	Structural and electrophysical properties of In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As/InP HEMT nanoheterostructures with different combinations of InAs and GaAs inserts in quantum well. Crystallography Reports, 2015, 60, 397-405.	0.1	1
57	Conductance anisotropy of δ-Si doped GaAs layers grown by molecular beam epitaxy on (111)A GaAs substrates and misoriented in the \$\$[2ar 1ar 1]\$\$ direction. Doklady Physics, 2002, 47, 419-421.	0.2	0
58	Peculiarities of conductivity in structures delta-doped by Si on vicinal (111)A GaAs substrate. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 172-173.	1.3	0
59	Electron magnetotransport in coupled quantum wells with double-sided doping. Semiconductors, 2004, 38, 1326-1331.	0.2	0
60	n-AlGaAs/GaAs/n-AlGaAs double quantum wells with an AlAs barrier: Relating the cladding doping level to structural and transport properties. Russian Microelectronics, 2005, 34, 78-87.	0.1	0
61	Electrical behavior of modulation-and delta-doped Al x Ga1 â^' x As/In y Ga1 â^' y As/GaAs PHEMT structures. Russian Microelectronics, 2006, 35, 67-73.	0.1	0
62	Low temperature electron magnetotransport in In _x Ga _{1-x} As/In _{0.52} Al _{0.48} As quantum wells with high electron density. Journal of Physics: Conference Series, 2009, 150, 022096.	0.3	0
63	The electrical and structural properties of In y Ga1 â^' y As/In x Al1 â^' x As/InP quantum wells with different InAs content. Crystallography Reports, 2010, 55, 6-9.	0.1	0
64	Influence of metamorphic buffer design on electrophysical and structural properties of MHEMT nanoheterostructures In _{0.7} Al _{0.3} As/In _{0.7} Ga _{0.3} As/In _{0.7} Al _{0.3} As/In _{0.3} As/In<	ub ^S Ås/Ga/	As. ⁰
65	High accuracy magnetic field sensors with wide operation temperature range. IOP Conference Series: Materials Science and Engineering, 2016, 151, 012029.	0.3	0
66	Electron properties of surface InGaAs/InAlAs quantum wells with inverted doping on InP substrates. Semiconductors, 2017, 51, 760-765.	0.2	0
67	Effect of Different De-Embedding Techniques on Small-Signal Parameters of X-Band Low-Noise Amplifier. , 2021, , .		0
68	Nonlinear plasmon-exciton infrared photodetector operating in the two-photon absorption mode. , 2022, , .		0