
Andrew P Maccabe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9535836/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biology, 2017, 18, 28.	3.8	417
2	The Aspergillus nidulans npeA locus consists of three contiguous genes required for penicillin biosynthesis EMBO Journal, 1990, 9, 279-287.	3.5	133
3	The 2008 update of the Aspergillus nidulans genome annotation: A community effort. Fungal Genetics and Biology, 2009, 46, S2-S13.	0.9	99
4	Aspergillus niger mstA encodes a high-affinity sugar/H+ symporter which is regulated in response to extracellular pH. Biochemical Journal, 2004, 379, 375-383.	1.7	97
5	Carbon catabolite repression of the Aspergillus nidulans xInA gene. Molecular Microbiology, 1999, 31, 177-184.	1.2	80
6	Molecular Cloning and Transcriptional Regulation of the Aspergillus nidulans xlnD Gene Encoding a β-Xylosidase. Applied and Environmental Microbiology, 1998, 64, 1412-1419.	1.4	64
7	Β-(L-α-Aminoadipyl)-L-Cysteinyl-D-Valine Synthetase, the Multienzyme Integrating the Four Primary Reactions in β-Lactam Biosynthesis, as a Model Peptide Synthetase. Nature Biotechnology, 1993, 11, 807-810.	9.4	55
8	Consecutive gene deletions in Aspergillus nidulans: application of the Cre/loxP system. Current Genetics, 2006, 50, 217-224.	0.8	50
9	Identification, isolation and sequence of the Aspergillus nidulans xlnC gene encoding the 34-kDa xylanase. Gene, 1996, 175, 29-33.	1.0	45
10	Identification of the mstE Gene Encoding a Glucose-inducible, Low Affinity Glucose Transporter in Aspergillus nidulans. Journal of Biological Chemistry, 2006, 281, 8339-8346.	1.6	43
11	Improving extracellular production of food-use enzymes from Aspergillus nidulans. Journal of Biotechnology, 2002, 96, 43-54.	1.9	41
12	The Wide-Domain Carbon Catabolite Repressor CreA Indirectly Controls Expression of the Aspergillus nidulans xInB Gene, Encoding the Acidic Endo-β-(1,4)-Xylanase X 24. Journal of Bacteriology, 2001, 183, 1517-1523.	1.0	39
13	AcpA, a member of the GPR1/FUN34/YaaH membrane protein family, is essential for acetate permease activity in the hyphal fungus Aspergillus nidulans. Biochemical Journal, 2008, 412, 485-493.	1.7	32
14	Identification, cloning and sequence of the Aspergillus niger areA wide domain regulatory gene controlling nitrogen utilisation. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1396, 163-168.	2.4	27
15	Heterologous Expression inAspergillus nidulansof aTrichoderma longibrachiatumEndoglucanase of Enological Relevance. Journal of Agricultural and Food Chemistry, 2000, 48, 951-957.	2.4	22
16	Glucose uptake in germinating Aspergillus nidulans conidia: involvement of the creA and sorA genes. Microbiology (United Kingdom), 2003, 149, 2129-2136.	0.7	22
17	High-Affinity Glucose Transport in Aspergillus nidulans Is Mediated by the Products of Two Related but Differentially Expressed Genes. PLoS ONE, 2014, 9, e94662.	1.1	22
18	Mutations in Two Independent Genes Lead to Suppression of the Shoot Apical Meristem in Maize. Plant Physiology, 2002, 128, 502-511.	2.3	14

ANDREW P MACCABE

# Article		IF	CITATIONS
19 Identification and expression of the ACV synthetase gene. Journal of Biotechnology, 19	91, 17, 91-97.	1.9	10
20 Title is missing!. World Journal of Microbiology and Biotechnology, 2001, 17, 57-60.		1.7	9
21 Catabolism of l-rhamnose in A. nidulans proceeds via the non-phosphorylated pathway repressed by a CreA-independent mechanism. Microbial Cell Factories, 2020, 19, 188.	and is glucose	1.9	6
Structural and transcriptional properties associated with a member of a new family of c short dispersed repeated elements in human DNA. Gene, 1985, 39, 255-261.	conserved	1.0	4
23 Questions linger over European GM food regulations. Nature Biotechnology, 2004, 22,	149-149.	9.4	4
Regulation of acid phosphatases in an. Molecular Genetics and Genomics, 1996, 251, 5	542.	2.4	3
Agrobacterium tumefaciens-Mediated Transformation of NHEJ Mutant Aspergillus nidul Efficient Tool for Targeted Gene Recombination Using Selectable Nutritional Markers. Jo Fungi (Basel, Switzerland), 2021, 7, 961.	lans Conidia: An ournal of	1.5	3
Identification of the genes encoding the catalytic steps corresponding to LRA4 (I ${\hat{a}}{\in}$) T	j ETQq0 0 0 rgBT /Overlock	10 Tf 50	472 Td (2â€
26 evidence for involvement of the loci AN9425 / IraD and AN0544 /. Environmental Microl 2420-2432.	biology, 2021, 23,	1.8	2
27 Identification, cloning and analysis of the. Molecular Genetics and Genomics, 1996, 250	0.367.	2.4	1