Xian-Tai Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9535697/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly efficient synthesis of cyclic carbonates from epoxides catalyzed by salen aluminum complexes with built-in "CO ₂ capture―capability under mild conditions. Green Chemistry, 2014, 16, 1496-1506.	9.0	125
2	Charged Metalloporphyrin Polymers for Cooperative Synthesis of Cyclic Carbonates from CO ₂ under Ambient Conditions. ChemSusChem, 2017, 10, 2534-2541.	6.8	122
3	Metalloporphyrin Polymers with Intercalated Ionic Liquids for Synergistic CO ₂ Fixation via Cyclic Carbonate Production. ACS Sustainable Chemistry and Engineering, 2018, 6, 1074-1082.	6.7	115
4	Stateâ€ofâ€theâ€Art Aluminum Porphyrinâ€based Heterogeneous Catalysts for the Chemical Fixation of CO ₂ into Cyclic Carbonates at Ambient Conditions. ChemCatChem, 2017, 9, 767-773.	3.7	111
5	Photocatalytic Degradation of Methyl Orange over Metalloporphyrins Supported on TiO2 Degussa P25. Molecules, 2012, 17, 1149-1158.	3.8	103
6	Efficient Selective Removal of Pb(II) by Using 6-Aminothiouracil-Modified Zr-Based Organic Frameworks: From Experiments to Mechanisms. ACS Applied Materials & Interfaces, 2020, 12, 7162-7178.	8.0	99
7	Function-oriented ionic polymers having high-density active sites for sustainable carbon dioxide conversion. Journal of Materials Chemistry A, 2018, 6, 9172-9182.	10.3	91
8	New bi-functional zinc catalysts based on robust and easy-to-handle N-chelating ligands for the synthesis of cyclic carbonates from epoxides and CO ₂ under mild conditions. Green Chemistry, 2014, 16, 4179-4189.	9.0	88
9	Metallosalenâ€Based Ionic Porous Polymers as Bifunctional Catalysts for the Conversion of CO ₂ into Valuable Chemicals. ChemSusChem, 2017, 10, 1526-1533.	6.8	77
10	Metal- and solvent-free synthesis of cyclic carbonates from epoxides and CO2 in the presence of graphite oxide and ionic liquid under mild conditions: A kinetic study. Carbon, 2015, 82, 1-11.	10.3	75
11	Highly efficient selective oxidation of alcohols to carbonyl compounds catalyzed by ruthenium (III) meso-tetraphenylporphyrin chloride in the presence of molecular oxygen. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 6364-6368.	2.2	72
12	Selective oxidation of sulfides to sulfoxides catalyzed by ruthenium (III) meso-tetraphenylporphyrin chloride in the presence of molecular oxygen. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 4650-4653.	2.2	70
13	Photocatalytic Properties and Mechanistic Insights into Visible Lightâ€Promoted Aerobic Oxidation of Sulfides to Sulfoxides via Tin Porphyrinâ€Based Porous Aromatic Frameworks. Advanced Synthesis and Catalysis, 2018, 360, 4402-4411.	4.3	67
14	Cooperative Catalytic Activation of Siâ^'H Bonds: CO ₂ â€Based Synthesis of Formamides from Amines and Hydrosilanes under Mild Conditions. ChemSusChem, 2017, 10, 1224-1232.	6.8	66
15	Biomimetic kinetics and mechanism of cyclohexene epoxidation catalyzed by metalloporphyrins. Chemical Engineering Journal, 2010, 156, 411-417.	12.7	63
16	Imidazolium-based ionic liquid decorated zinc porphyrin catalyst for converting CO ₂ into five-membered heterocyclic molecules. Sustainable Energy and Fuels, 2018, 2, 125-132.	4.9	59
17	Aerobic oxidative cleavage of cinnamaldehyde to benzaldehyde catalyzed by metalloporphyrins under mild conditions. Catalysis Communications, 2009, 10, 828-832.	3.3	55
18	Highly efficient aerobic oxidation of oximes to carbonyl compounds catalyzed by metalloporphyrins in the presence of benzaldehyde. Tetrahedron Letters, 2010, 51, 613-617.	1.4	50

#	Article	IF	CITATIONS
19	Hybridization of CuO with Bi ₂ MoO ₆ Nanosheets as a Surface Multifunctional Photocatalyst for Toluene Oxidation under Solar Irradiation. ACS Applied Materials & Interfaces, 2020, 12, 2259-2268.	8.0	50
20	Enhancement of the visible-light absorption and charge mobility in a zinc porphyrin polymer/g-C3N4 heterojunction for promoting the oxidative coupling of amines. Applied Catalysis B: Environmental, 2021, 285, 119863.	20.2	49
21	Enzymatic-like mediated olefins epoxidation by molecular oxygen under mild conditions. Tetrahedron Letters, 2007, 48, 2691-2695.	1.4	45
22	Remarkable enhancement of aerobic epoxidation reactivity for olefins catalyzed by μ-oxo-bisiron(III) porphyrins under ambient conditions. Tetrahedron Letters, 2009, 50, 6601-6605.	1.4	44
23	Baeyer-Villiger oxidation of ketones catalyzed by iron(III) <i>meso</i> -tetraphenylporphyrin chloride in the presence of molecular oxygen. Journal of Porphyrins and Phthalocyanines, 2008, 12, 94-100.	0.8	43
24	Solvent-free selective oxidation of primary and secondary alcohols catalyzed by ruthenium-bis(benzimidazole)pyridinedicarboxylate complex using hydrogen peroxide as an oxidant. Tetrahedron Letters, 2013, 54, 3882-3885.	1.4	40
25	Highly efficient mixed-metal spinel cobaltite electrocatalysts for the oxygen evolution reaction. Chinese Journal of Catalysis, 2020, 41, 1855-1863.	14.0	39
26	Enhanced selective removal of Pb(II) by modification low-cost bio-sorbent: Experiment and theoretical calculations. Journal of Cleaner Production, 2021, 316, 128372.	9.3	38
27	Efficient oxidative coupling of amines to imines catalyzed by manganese(III) meso-tetraphenylporphyrin chloride under ambient conditions. Catalysis Communications, 2010, 12, 202-206.	3.3	37
28	Green synthesis of natural benzaldehyde from cinnamon oil catalyzed byÂhydroxypropyl-β-cyclodextrin. Tetrahedron, 2010, 66, 9888-9893.	1.9	34
29	Highly efficient controllable oxidation of alcohols to aldehydes and acids with sodium periodate catalyzed by water-soluble metalloporphyrins as biomimetic catalyst. Bioorganic and Medicinal Chemistry, 2010, 18, 8144-8149.	3.0	30
30	Remarkable differences between benzaldehyde and isobutyraldehyde as coreductant in the performance towardÂthe iron(III) porphyrins-catalyzed aerobic Baeyer–Villiger oxidation of cyclohexanone, kinetic and mechanistic features. Tetrahedron, 2013, 69, 4241-4246.	1.9	30
31	Mechanism into selective oxidation of cinnamaldehyde using β-cyclodextrin polymer as phase-transfer catalyst. Tetrahedron, 2012, 68, 5912-5919.	1.9	29
32	Insight into the cocatalyst effect of 4A molecular sieve on Sn(II) porphyrin-catalyzed B–V oxidation of cyclohexanone. Catalysis Today, 2016, 264, 191-197.	4.4	29
33	Recyclable bifunctional aluminum salen catalyst for CO2 fixation: the efficient formation of five-membered heterocyclic compounds. Science China Chemistry, 2017, 60, 979-989.	8.2	29
34	Highly efficient selective oxidation of sulfides to sulfoxides by montmorillonite-immobilized metalloporphyrins in the presence of molecular oxygen. Catalysis Communications, 2014, 53, 29-32.	3.3	28
35	Direct aerobic liquid phase epoxidation of propylene catalyzed by Mn(<scp>iii</scp>) porphyrin under mild conditions: evidence for the existence of both peroxide and Mn(<scp>iv</scp>)-oxo species from in situ characterizations. RSC Advances, 2015, 5, 30014-30020.	3.6	27
36	Click-Based Porous Ionic Polymers with Intercalated High-Density Metalloporphyrin for Sustainable CO ₂ Transformation. Industrial & Engineering Chemistry Research, 2020, 59, 20269-20277.	3.7	26

#	Article	IF	CITATIONS
37	Sustainable synthesis of multifunctional porous metalloporphyrin polymers for efficient carbon dioxide transformation under mild conditions. Chemical Engineering Science, 2021, 232, 116380.	3.8	26
38	TiO2 nanotube arrays sensitized by copper (II) porphyrins with efficient interfacial charge transfer for the photocatalytic degradation of 4-nitrophenol. Journal of Hazardous Materials, 2022, 422, 126869.	12.4	25
39	Cocatalytic effect of cobalt acetate on aerobic cyclohexene oxidation catalyzed by manganese porphyrin. Catalysis Communications, 2012, 27, 169-173.	3.3	24
40	Mimicking the environment of living organisms to achieve the oxidative coupling of amines to imines catalyzed by water-soluble metalloporphyrins. Tetrahedron Letters, 2012, 53, 3369-3373.	1.4	24
41	A Carbazolyl Porphyrinâ€Based Conjugated Microporous Polymer for Metalâ€Free Photocatalytic Aerobic Oxidation Reactions. ChemCatChem, 2020, 12, 3523-3529.	3.7	24
42	Synthesis and cytotoxic evaluation of 1-carboxamide and 1-amino side chain substituted β-carbolines. European Journal of Medicinal Chemistry, 2010, 45, 5513-5519.	5.5	23
43	Highly Efficient Oxidative Cleavage of Carbonâ€Carbon Double Bond over <i>meso</i> â€Tetraphenyl Cobalt Porphyrin Catalyst in the Presence of Molecular Oxygen. Chinese Journal of Chemistry, 2012, 30, 2103-2108.	4.9	23
44	Metalloporphyrin-mediated aerobic oxidation of hydrocarbons in cumene: Co-substrate specificity and mechanistic consideration. Molecular Catalysis, 2017, 440, 36-42.	2.0	23
45	A novel system comprising metalloporphyrins and cyclohexene for the biomimetic aerobic oxidation of toluene. Catalysis Communications, 2018, 109, 76-79.	3.3	23
46	Efficient Solvent-free Synthesis of Chloropropene Carbonate from the Coupling Reaction of CO2 and Epichlorohydrin Catalyzed by Magnesium Porphyrins as Chlorophyll-like Catalysts. Chinese Journal of Chemical Engineering, 2011, 19, 446-451.	3.5	22
47	Immobilization of β-Cyclodextrin as Insoluble β-Cyclodextrin Polymer and Its Catalytic Performance. Chinese Journal of Chemical Engineering, 2012, 20, 784-792.	3.5	22
48	Cytochrome <scp>P450</scp> Enzymeâ€Copper Phosphate Hybrid Nanoâ€Flowers with Superior Catalytic Performances for Selective Oxidation of Sulfides. Chinese Journal of Chemistry, 2017, 35, 693-698.	4.9	21
49	Zinc porphyrin-based electron donor–acceptor-conjugated microporous polymer for the efficient photocatalytic oxidative coupling of amines under visible light. Applied Catalysis A: General, 2020, 590, 117352.	4.3	21
50	Tannic Acid as a Polyphenol Materialâ€Assisted Synthesis of Cyclic Carbonates Using CO ₂ as a Feedstock: Kinetic Characteristic and Mechanism Studies. Chinese Journal of Chemistry, 2017, 35, 659-664.	4.9	20
51	Promoting the aerobic Baeyer-Villiger oxidation of ketones over carboxylic multi-walled carbon nanotubes. Molecular Catalysis, 2017, 438, 152-158.	2.0	19
52	Hybrid method integrating machine learning and particle swarm optimization for smart chemical process operations. Frontiers of Chemical Science and Engineering, 2022, 16, 274-287.	4.4	19
53	Cobalt Porphyrin Immobilized on Montmorillonite: A Highly Efficient and Reusable Catalyst for Aerobic Oxidation of Alcohols to Carbonyl Compounds. Chinese Journal of Catalysis, 2012, 33, 1906-1912.	14.0	18
54	Mechanistic Understanding towards the Role of Cyclohexene in Enhancing the Efficiency of Manganese Porphyrin atalyzed Aerobic Oxidation of Diphenylmethane. European Journal of Inorganic Chemistry, 2018, 2018, 2666-2674.	2.0	16

#	Article	IF	CITATIONS
55	Manganese porphyrin immobilized on montmorillonite: a highly efficient and reusable catalyst for the aerobic epoxidation of olefins under ambient conditions. Journal of Porphyrins and Phthalocyanines, 2012, 16, 1032-1039.	0.8	15
56	Enhanced catalytic activity and recyclability for oxidation of cinnamaldehyde catalysed by β-cyclodextrin cross-linked with chitosan. Supramolecular Chemistry, 2013, 25, 233-245.	1.2	15
57	Transformation of carbon dioxide into valuable chemicals over bifunctional metallosalen catalysts bearing quaternary phosphonium salts. Chinese Journal of Catalysis, 2017, 38, 736-744.	14.0	15
58	Biâ€, Y odoped TiO2 for Carbon Dioxide Photocatalytic Reduction to Formic Acid under Visible Light Irradiation. Chinese Journal of Chemistry, 2018, 36, 538-544.	4.9	15
59	Ionic Liquid-Modified Co/ZSM-5 Catalyzed the Aerobic Oxidation of Cyclohexane: Toward Improving the Activity and Selectivity. Industrial & Engineering Chemistry Research, 2019, 58, 19832-19838.	3.7	15
60	Preparation of cytochrome P450 enzyme-cobalt phosphate hybrid nano-flowers for oxidative coupling of benzylamine. Enzyme and Microbial Technology, 2019, 131, 109386.	3.2	15
61	Recyclable Pd supported catalysts with low loading for efficient epoxidation of olefins at ambient conditions. Catalysis Communications, 2016, 83, 78-81.	3.3	14
62	Selfâ€assembled metalloporphyrins–inorganic hybrid flowers and their application to efficient epoxidation of olefins. Journal of Chemical Technology and Biotechnology, 2017, 92, 2594-2605.	3.2	12
63	Biomimetic Aerobic Epoxidation of Alkenes Catalyzed by Cobalt Porphyrin under Ambient Conditions in the Presence of Sunflower Seeds Oil as a Co-Substrate. ACS Omega, 2020, 5, 4890-4899.	3.5	12
64	Cyclohexene Promoted Efficient Biomimetic Oxidation of Alcohols to Carbonyl Compounds Catalyzed by Manganese Porphyrin under Mild Conditions. Chinese Journal of Chemistry, 2020, 38, 458-464.	4.9	12
65	Enhanced oxygen transfer over bifunctional Mo-based oxametallacycle catalyst for epoxidation of propylene. Journal of Colloid and Interface Science, 2022, 611, 564-577.	9.4	12
66	Styrene–hydroxyethyl methacrylate copolymer microsphere immobilized porphyrinatomanganese(III) as a mild, reusable and highly efficient catalyst for epoxidation of cyclohexene with molecular oxygen. Journal of Molecular Catalysis A, 2010, 331, 29-34.	4.8	11
67	Zinc phthalocyanine as an efficient catalyst for halogen-free synthesis of formamides from amines via carbon dioxide hydrosilylation under mild conditions. Chinese Journal of Catalysis, 2017, 38, 1382-1389.	14.0	10
68	Acetylacetone as an oxygen activator to improve efficiency for aerobic oxidation of toluene and its derivatives by using cobalt <i>meso</i> -tetraphenylporphyrin. New Journal of Chemistry, 2020, 44, 10286-10291.	2.8	10
69	Oxygen Atom Transfer Mechanism for <scp>Vanadiumâ€Oxo</scp> Porphyrin Complexes Mediated Aerobic Olefin Epoxidation. Chinese Journal of Chemistry, 2022, 40, 115-122.	4.9	10
70	A metal-free hydroxyl functionalized quaternary phosphine type ionic liquid polymer for cycloaddition of CO ₂ and epoxides. Dalton Transactions, 2022, 51, 1303-1307.	3.3	10
71	Efficient selective oxidation of alcohols to carbonyl compounds catalyzed by Ru-terpyridine complexes with molecular oxygen. Inorganic Chemistry Communication, 2020, 112, 107544.	3.9	9
72	Mechanism and kinetics of the aerobic oxidation of benzyl alcohol to benzaldehyde catalyzed by cobalt porphyrin in a membrane microchannel reactor. Chemical Engineering Science, 2021, 245, 116847.	3.8	9

#	Article	IF	CITATIONS
73	β-Cyclodextrin polymer promoted green synthesis of cinnamaldehyde to natural benzaldehyde in aqueous solution. Supramolecular Chemistry, 2012, 24, 379-384.	1.2	8
74	lonic liquids modified cobalt/ZSM-5 as a highly efficient catalyst for enhancing the selectivity towards KA oil in the aerobic oxidation of cyclohexane. Open Chemistry, 2019, 17, 639-646.	1.9	8
75	Efficient catalytic oxidation of primary benzylic C H bonds with molecular oxygen catalyzed by cobalt porphyrins and N-hydroxyphthalimide (NHPI) in supercritical carbon dioxide. Catalysis Communications, 2021, 159, 106353.	3.3	8
76	Styrene-hydroxyethyl methacrylate copolymer-supported porphyrinatomanganese(III) complexes: synthesis and catalytic cyclohexane hydroxylation with molecular oxygen. Transition Metal Chemistry, 2010, 35, 627-632.	1.4	7
77	Kinetic and mechanism of the aqueous selective oxidation of sulfides to sulfoxides: insight into the cytochrome P450-like oxidative metabolic process. Journal of Porphyrins and Phthalocyanines, 2013, 17, 1104-1112.	0.8	7
78	Efficient and selective oxidation of alcohols to carbonyl compounds at room temperature by a ruthenium complex catalyst and hydrogen peroxide. New Journal of Chemistry, 2019, 43, 19415-19421.	2.8	7
79	Cerium(IV) Sulfate as a Cocatalyst for Promoting the Direct Epoxidation of Propylene by Ruthenium Porphyrin with Molecular Oxygen. Industrial & Engineering Chemistry Research, 2020, 59, 19982-19988.	3.7	7
80	Highly efficient oxidation of diphenylmethane to benzophenone employing a novel ruthenium catalyst with tert-butylhydroperoxide under mild conditions. Catalysis Communications, 2013, 37, 60-63.	3.3	6
81	Oxidative cleavage of CÂ=ÂC bond of cinnamaldehyde to benzaldehyde in the presence of β-cyclodextrin under mild conditions. Supramolecular Chemistry, 2012, 24, 247-254.	1.2	5
82	Dynamic Covalent Bonds of Si-OR and Si-OSi Enabled A Stiff Polymer to Heal and Recycle at Room Temperature. Materials, 2021, 14, 2680.	2.9	5
83	Biomimetic models of nitric oxide synthase for the oxidation of oximes to carbonyl compounds catalyzed by water-soluble manganese porphyrins in aqueous solution. Journal of Porphyrins and Phthalocyanines, 2011, 15, 211-216.	0.8	4
84	Highly Efficient Aerobic Oxidation of Cyclohexene Catalyzed by Iron(III) Porphyrins in Supercritical Carbon Dioxide. ECS Journal of Solid State Science and Technology, 2020, 9, 041014.	1.8	4
85	Substrate specificity in the biomimetic catalytic aerobic oxidation of styrene and cyclohexanone by metalloporphyrins: kinetics and mechanistic study. Green Chemical Engineering, 2021, 2, 217-223.	6.3	4
86	Advance in the Construction and Application of Cyclodextrin- Porphyrin Supramolecular System. Chinese Journal of Organic Chemistry, 2012, 32, 686.	1.3	4
87	Tubular metal organic frameworks from the curvature of 2D-honeycombed metal coordination. Dalton Transactions, 2020, 49, 2403-2406.	3.3	3
88	Facile Synthesis of Metalloporphyrins-Ba2+ Composites as Recyclable and Efficient Catalysts for Olefins Epoxidation Reactions. Chemical Research in Chinese Universities, 2019, 35, 251-255.	2.6	2
89	Liquid-phase epoxidation of propylene with molecular oxygen by chloride manganese meso-tetraphenylporphyrins. Chinese Journal of Chemical Engineering, 2022, 48, 61-65.	3.5	1
90	Progress in the application of metalloporphyrins compounds in catalytic oxidation reactions. Scientia Sinica Chimica, 2022, 52, 1224-1238.	0.4	1

#	Article	IF	CITATIONS
91	Manganese porphyrin-mediated aerobic epoxidation of propylene with isoprene: A new strategy for simultaneously preparing propylene epoxide and isoprene monoxide. Chinese Chemical Letters, 2023, 34, 107658.	9.0	1
92	Nâ€hydroxyphthalimide Catalyzed Epoxidation of Inactive Aliphatic Olefins with Air at Room Temperature. Asian Journal of Organic Chemistry, 0, , .	2.7	0