
Maxence V Nachury

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9535546/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Time-resolved proteomics profiling of the ciliary Hedgehog response. Journal of Cell Biology, 2021, 220, .	2.3	50
2	Ubiquitin chains earmark GPCRs for BBSome-mediated removal from cilia. Journal of Cell Biology, 2020, 219, .	2.3	54
3	Near-atomic structures of the BBSome reveal the basis for BBSome activation and binding to GPCR cargoes. ELife, 2020, 9, .	2.8	38
4	The Molecular Architecture of Native BBSome Obtained by an Integrated Structural Approach. Structure, 2019, 27, 1384-1394.e4.	1.6	51
5	Effects of α-tubulin acetylation on microtubule structure and stability. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10366-10371.	3.3	216
6	Establishing and regulating the composition of cilia for signal transduction. Nature Reviews Molecular Cell Biology, 2019, 20, 389-405.	16.1	310
7	BBSome trains remove activated GPCRs from cilia by enabling passage through the transition zone. Journal of Cell Biology, 2018, 217, 1847-1868.	2.3	208
8	A CRISPR-based screen for Hedgehog signaling provides insights into ciliary function and ciliopathies. Nature Genetics, 2018, 50, 460-471.	9.4	140
9	The molecular machines that traffic signaling receptors into and out of cilia. Current Opinion in Cell Biology, 2018, 51, 124-131.	2.6	155
10	Tubulin acetylation protects long-lived microtubules against mechanical ageing. Nature Cell Biology, 2017, 19, 391-398.	4.6	359
11	Microtubules acquire resistance from mechanical breakage through intralumenal acetylation. Science, 2017, 356, 328-332.	6.0	342
12	Membrane traffic control by cytoskeletal and molecular machines. Molecular Biology of the Cell, 2017, 28, 697-698.	0.9	0
13	Fifteen years of research on oral–facial–digital syndromes: from 1 to 16 causal genes. Journal of Medical Genetics, 2017, 54, 371-380.	1.5	85
14	An Actin Network Dispatches Ciliary GPCRs into Extracellular Vesicles to Modulate Signaling. Cell, 2017, 168, 252-263.e14.	13.5	290
15	BORC Regulates the Axonal Transport of Synaptic Vesicle Precursors by Activating ARL-8. Current Biology, 2017, 27, 2569-2578.e4.	1.8	72
16	Chemical structure-guided design of dynapyrazoles, cell-permeable dynein inhibitors with a unique mode of action. ELife, 2017, 6, .	2.8	31
17	Loss of the BBSome perturbs endocytic trafficking and disrupts virulence of <i>Trypanosoma brucei</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 632-637.	3.3	38
18	Cytoplasmic Dynein Antagonists with Improved Potency and Isoform Selectivity. ACS Chemical Biology, 2016, 11, 53-60.	1.6	19

MAXENCE V NACHURY

#	Article	IF	CITATIONS
19	Localization of GFP-Tagged Proteins at the Electron Microscope. Neuromethods, 2016, , 179-190.	0.2	1
20	Abstract B068: Structural basis for Notch1 engagement of Delta-like 4 and Jagged1. , 2016, , .		1
21	Proteomics of Primary Cilia by Proximity Labeling. Developmental Cell, 2015, 35, 497-512.	3.1	328
22	Structural basis for Notch1 engagement of Delta-like 4. Science, 2015, 347, 847-853.	6.0	222
23	Analysis of soluble protein entry into primary cilia using semipermeabilized cells. Methods in Cell Biology, 2015, 127, 203-221.	0.5	13
24	Microtubules self-repair in response to mechanical stress. Nature Materials, 2015, 14, 1156-1163.	13.3	244
25	Structural basis for membrane targeting of the BBSome by ARL6. Nature Structural and Molecular Biology, 2014, 21, 1035-1041.	3.6	77
26	α-Tubulin K40 acetylation is required for contact inhibition of proliferation and cell–substrate adhesion. Molecular Biology of the Cell, 2014, 25, 1854-1866.	0.9	71
27	Effects of tubulin acetylation and tubulin acetyltransferase binding on microtubule structure. Molecular Biology of the Cell, 2014, 25, 257-266.	0.9	149
28	Movement of Signaling Receptors Inside Primary Cilia. Biophysical Journal, 2014, 106, 9a.	0.2	0
29	Exome sequencing of Bardet–Biedl syndrome patient identifies a null mutation in the BBSome subunit <i>BBIP1</i> (<i>BBS18</i>). Journal of Medical Genetics, 2014, 51, 132-136.	1.5	124
30	The oral-facial-digital syndrome gene C2CD3 encodes a positive regulator of centriole elongation. Nature Genetics, 2014, 46, 905-911.	9.4	121
31	The Intraflagellar Transport Protein IFT27 Promotes BBSome Exit from Cilia through the GTPase ARL6/BBS3. Developmental Cell, 2014, 31, 265-278.	3.1	186
32	How do cilia organize signalling cascades?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130465.	1.8	128
33	αTAT1 catalyses microtubule acetylation at clathrin-coated pits. Nature, 2013, 502, 567-570.	13.7	95
34	Cilia Grow by Taking a Bite out of the Cell. Developmental Cell, 2013, 27, 126-127.	3.1	11
35	An in vitro assay for entry into cilia reveals unique properties of the soluble diffusion barrier. Journal of Cell Biology, 2013, 203, 129-147.	2.3	160
36	Single molecule imaging reveals a major role for diffusion in the exploration of ciliary space by signaling receptors. ELife, 2013, 2, e00654.	2.8	128

#	Article	IF	CITATIONS
37	Structure of the α-tubulin acetyltransferase, αTAT1, and implications for tubulin-specific acetylation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19655-19660.	3.3	64
38	Primary Cilia: How to Keep the Riff-Raff in the Plasma Membrane. Current Biology, 2011, 21, R434-R436.	1.8	13
39	Give chance a chance. Molecular Biology of the Cell, 2011, 22, 3919-3920.	0.9	Ο
40	Primary cilia membrane assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex-dependent trafficking of Rabin8 to the centrosome. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2759-2764.	3.3	376
41	A Novel Protein LZTFL1 Regulates Ciliary Trafficking of the BBSome and Smoothened. PLoS Genetics, 2011, 7, e1002358.	1.5	182
42	Maxence Nachury: A transporting view of the primary cilium. Journal of Cell Biology, 2010, 191, 436-437.	2.3	1
43	The perennial organelle: assembly and disassembly of the primary cilium. Journal of Cell Science, 2010, 123, 511-518.	1.2	189
44	The major α-tubulin K40 acetyltransferase αTAT1 promotes rapid ciliogenesis and efficient mechanosensation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21517-21522.	3.3	366
45	A Septin Diffusion Barrier at the Base of the Primary Cilium Maintains Ciliary Membrane Protein Distribution. Science, 2010, 329, 436-439.	6.0	439
46	The Conserved Bardet-Biedl Syndrome Proteins Assemble a Coat that Traffics Membrane Proteins to Cilia. Cell, 2010, 141, 1208-1219.	13.5	542
47	Trafficking to the Ciliary Membrane: How to Get Across the Periciliary Diffusion Barrier?. Annual Review of Cell and Developmental Biology, 2010, 26, 59-87.	4.0	387
48	Constructing and Deconstructing Roles for the Primary Cilium in Tissue Architecture and Cancer. Methods in Cell Biology, 2009, 94, 299-313.	0.5	19
49	The BBSome. Current Biology, 2009, 19, R472-R473.	1.8	70
50	A BBSome Subunit Links Ciliogenesis, Microtubule Stability, and Acetylation. Developmental Cell, 2008, 15, 854-865.	3.1	272
51	The nucleolar phosphatase <i>Cdc14B</i> is dispensable for chromosome segregation and mitotic exit in human cells. Cell Cycle, 2008, 7, 1184-1190.	1.3	81
52	Tandem Affinity Purification of the BBSome, a Critical Regulator of Rab8 in Ciliogenesis. Methods in Enzymology, 2008, 439, 501-513.	0.4	34
53	How to build a signalling organelle: A molecular pathway for biogenesis of the ciliary membrane. FASEB Journal, 2008, 22, 628.1.	0.2	0
54	The END Network Couples Spindle Pole Assembly to Inhibition of the Anaphase-Promoting Complex/Cyclosome in Early Mitosis. Developmental Cell, 2007, 13, 29-42.	3.1	44

MAXENCE V NACHURY

#	Article	IF	CITATIONS
55	A Core Complex of BBS Proteins Cooperates with the GTPase Rab8 to Promote Ciliary Membrane Biogenesis. Cell, 2007, 129, 1201-1213.	13.5	1,248
56	Emi1 stably binds and inhibits the anaphase-promoting complex/cyclosome as a pseudosubstrate inhibitor. Genes and Development, 2006, 20, 2410-2420.	2.7	180
57	A Rae1-Containing Ribonucleoprotein Complex Is Required for Mitotic Spindle Assembly. Cell, 2005, 121, 223-234.	13.5	257
58	Xenopus Cdc14 alpha/beta are localized to the nucleolus and centrosome and are required for embryonic cell division. BMC Cell Biology, 2004, 5, 27.	3.0	26
59	Importin Î ² Is a Mitotic Target of the Small GTPase Ran in Spindle Assembly. Cell, 2001, 104, 95-106.	13.5	373
60	The direction of transport through the nuclear pore can be inverted. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 9622-9627.	3.3	166
61	Cloning and characterization of hSRP1Â, a tissue-specific nuclear transport factor. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 582-587.	3.3	103
62	Measurement of tubulin oligomers self-assembly by FRET Protocol Exchange, 0, , .	0.3	1