List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9535116/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 2002, 415, 141-147.	13.7	4,509
2	Proteome survey reveals modularity of the yeast cell machinery. Nature, 2006, 440, 631-636.	13.7	2,347
3	Drug Target Identification Using Side-Effect Similarity. Science, 2008, 321, 263-266.	6.0	1,097
4	A physical and functional map of the human TNF-α/NF-κB signal transduction pathway. Nature Cell Biology, 2004, 6, 97-105.	4.6	970
5	Visualization of omics data for systems biology. Nature Methods, 2010, 7, S56-S68.	9.0	548
6	Proteome Organization in a Genome-Reduced Bacterium. Science, 2009, 326, 1235-1240.	6.0	440
7	90S Pre-Ribosomes Include the 35S Pre-rRNA, the U3 snoRNP, and 40S Subunit Processing Factors but Predominantly Lack 60S Synthesis Factors. Molecular Cell, 2002, 10, 105-115.	4.5	427
8	Transcriptome Complexity in a Genome-Reduced Bacterium. Science, 2009, 326, 1268-1271.	6.0	394
9	Structure-Based Assembly of Protein Complexes in Yeast. Science, 2004, 303, 2026-2029.	6.0	367
10	Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins. Nature, 2013, 501, 257-261.	13.7	279
11	The minimum information required for reporting a molecular interaction experiment (MIMIx). Nature Biotechnology, 2007, 25, 894-898.	9.4	274
12	Impact of Genome Reduction on Bacterial Metabolism and Its Regulation. Science, 2009, 326, 1263-1268.	6.0	267
13	Quantification of mRNA and protein and integration with protein turnover in a bacterium. Molecular Systems Biology, 2011, 7, 511.	3.2	267
14	Deciphering a global network of functionally associated postâ€ŧranslational modifications. Molecular Systems Biology, 2012, 8, 599.	3.2	216
15	A Conserved Circular Network of Coregulated Lipids Modulates Innate Immune Responses. Cell, 2015, 162, 170-183.	13.5	181
16	Crossâ€ŧalk between phosphorylation and lysine acetylation in a genomeâ€reduced bacterium. Molecular Systems Biology, 2012, 8, 571.	3.2	169
17	Modules, networks and systems medicine for understanding disease and aiding diagnosis. Genome Medicine, 2014, 6, 82.	3.6	169
18	Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations. Blood. 2018, 132, 1225-1240.	0.6	168

#	Article	IF	CITATIONS
19	A MAP kinase docking site is required for phosphorylation and activation of p90rsk/MAPKAP kinase-1. Current Biology, 1999, 9, 281-286.	1.8	163
20	The systematic analysis of protein–lipid interactions comes of age. Nature Reviews Molecular Cell Biology, 2015, 16, 753-761.	16.1	148
21	A systematic screen for protein–lipid interactions in <i>Saccharomyces cerevisiae</i> . Molecular Systems Biology, 2010, 6, 430.	3.2	146
22	Defining a minimal cell: essentiality of small <scp>ORF</scp> s and nc <scp>RNA</scp> s in a genomeâ€reduced bacterium. Molecular Systems Biology, 2015, 11, 780.	3.2	133
23	Protein complexes and proteome organization from yeast to man. Current Opinion in Chemical Biology, 2003, 7, 21-27.	2.8	125
24	Visualizing biological data—now and in the future. Nature Methods, 2010, 7, S2-S4.	9.0	115
25	Inâ€Vivo Profiling and Visualization of Cellular Protein–Lipid Interactions Using Bifunctional Fatty Acids. Angewandte Chemie - International Edition, 2013, 52, 4033-4038.	7.2	114
26	Recent advances in charting protein–protein interaction: mass spectrometry-based approaches. Current Opinion in Biotechnology, 2011, 22, 42-49.	3.3	113
27	Characterization of drugâ€induced transcriptional modules: towards drug repositioning and functional understanding. Molecular Systems Biology, 2013, 9, 662.	3.2	110
28	Systematic identification of proteins that elicit drug side effects. Molecular Systems Biology, 2013, 9, 663.	3.2	110
29	Capturing protein communities by structural proteomics in a thermophilic eukaryote. Molecular Systems Biology, 2017, 13, 936.	3.2	108
30	Bifunctional Sphingosine for Cell-Based Analysis of Protein-Sphingolipid Interactions. ACS Chemical Biology, 2016, 11, 222-230.	1.6	99
31	Mechismo: predicting the mechanistic impact of mutations and modifications on molecular interactions. Nucleic Acids Research, 2015, 43, e10-e10.	6.5	95
32	Cell type–specific chromatin immunoprecipitation from multicellular complex samples using BiTS-ChIP. Nature Protocols, 2012, 7, 978-994.	5.5	90
33	A complex prediction: threeâ€dimensional model of the yeast exosome. EMBO Reports, 2002, 3, 628-635.	2.0	89
34	SIGNAL TRANSDUCTION:Cell Survival Demands Some Rsk. Science, 1999, 286, 1309-1310.	6.0	87
35	The orchestra of lipid-transfer proteins at the crossroads between metabolism and signaling. Progress in Lipid Research, 2016, 61, 30-39.	5.3	85
36	The social network of a cell: Recent advances in interactome mapping. Biotechnology Annual Review, 2008, 14, 1-28.	2.1	84

#	Article	IF	CITATIONS
37	A quantitative liposome microarray to systematically characterize protein-lipid interactions. Nature Methods, 2014, 11, 47-50.	9.0	77
38	Cell-specific proteome analyses of human bone marrow reveal molecular features of age-dependent functional decline. Nature Communications, 2018, 9, 4004.	5.8	71
39	Interaction networks for systems biology. FEBS Letters, 2008, 582, 1220-1224.	1.3	64
40	The deca-GX3 proteins Yae1-Lto1 function as adaptors recruiting the ABC protein Rli1 for iron-sulfur cluster insertion. ELife, 2015, 4, e08231.	2.8	62
41	Casein kinase 2-dependent serine phosphorylation of MuSK regulates acetylcholine receptor aggregation at the neuromuscular junction. Genes and Development, 2006, 20, 1800-1816.	2.7	60
42	Lipid Cooperativity as a General Membrane-Recruitment Principle for PH Domains. Cell Reports, 2015, 12, 1519-1530.	2.9	59
43	An integrated approach for genome annotation of the eukaryotic thermophile Chaetomium thermophilum. Nucleic Acids Research, 2014, 42, 13525-13533.	6.5	55
44	SnapShot: Protein-Protein Interaction Networks. Cell, 2011, 144, 1000-1000.e1.	13.5	51
45	Mass Spectrometry Reveals Stable Modules in holo and apo RNA Polymerases I and III. Structure, 2011, 19, 90-100.	1.6	47
46	A p90 ^{rsk} Mutant Constitutively Interacting with MAP Kinase Uncouples MAP Kinase from p34 ^{cdc2} /Cyclin B Activation in <i>Xenopus</i> Oocytes. Molecular Biology of the Cell, 1999, 10, 2971-2986.	0.9	44
47	Systematic identification of phosphorylation-mediated protein interaction switches. PLoS Computational Biology, 2017, 13, e1005462.	1.5	44
48	Transcription start site associated RNAs in bacteria. Molecular Systems Biology, 2012, 8, 585.	3.2	40
49	Enzymatic complexes across scales. Essays in Biochemistry, 2018, 62, 501-514.	2.1	40
50	APOE2, E3, and E4 differentially modulate cellular homeostasis, cholesterol metabolism, and inflammatory response in isogenic iPSC-derived astrocytes. Stem Cell Reports, 2022, 17, 110-126.	2.3	40
51	Structure of the Kti11/Kti13 Heterodimer and Its Double Role in Modifications of tRNA and Eukaryotic Elongation Factor 2. Structure, 2015, 23, 149-160.	1.6	36
52	Integration of multi-omics data of a genome-reduced bacterium: Prevalence of post-transcriptional regulation and its correlation with protein abundances. Nucleic Acids Research, 2016, 44, 1192-1202.	6.5	35
53	Isoform- and cell-state-specific lipidation of ApoE in astrocytes. Cell Reports, 2022, 38, 110435.	2.9	35
54	Phosphatase of regenerating liver (PRL)-3 disrupts epithelial architecture by altering the post-mitotic midbody position. Journal of Cell Science, 2016, 129, 4130-4142.	1.2	33

#	Article	IF	CITATIONS
55	Structural and functional dissection of the DH and PH domains of oncogenic Bcr-Abl tyrosine kinase. Nature Communications, 2017, 8, 2101.	5.8	33
56	Identification of metabolites from tandem mass spectra with a machine learning approach utilizing structural features. Bioinformatics, 2020, 36, 1213-1218.	1.8	31
57	Structural insights and activating mutations in diverse pathologies define mechanisms of deregulation for phospholipase C gamma enzymes. EBioMedicine, 2020, 51, 102607.	2.7	31
58	Quantitative mass spectrometry of posttranslational modifications: Keys to confidence. Science Signaling, 2015, 8, re5.	1.6	30
59	Cell metabolism regulates integrin mechanosensing via an SLC3A2-dependent sphingolipid biosynthesis pathway. Nature Communications, 2018, 9, 4862.	5.8	28
60	Detection and Characterization of Protein Interactions In Vivo by a Simple Live-Cell Imaging Method. PLoS ONE, 2013, 8, e62195.	1.1	28
61	Dynamic Buffering of Extracellular Chemokine by a Dedicated Scavenger Pathway Enables Robust Adaptation during Directed Tissue Migration. Developmental Cell, 2020, 52, 492-508.e10.	3.1	25
62	A protocol for the systematic and quantitative measurement of protein–lipid interactions using the liposome-microarray-based assay. Nature Protocols, 2016, 11, 1021-1038.	5.5	24
63	Structural Analyses of the Slm1-PH Domain Demonstrate Ligand Binding in the Non-Canonical Site. PLoS ONE, 2012, 7, e36526.	1.1	21
64	Structures of three MORN repeat proteins and a re-evaluation of the proposed lipid-binding properties of MORN repeats. PLoS ONE, 2020, 15, e0242677.	1.1	18
65	A generic protocol for the purification and characterization of water-soluble complexes of affinity-tagged proteins and lipids. Nature Protocols, 2014, 9, 2256-2266.	5.5	16
66	Effects of Acetylation and Phosphorylation on Subunit Interactions in Three Large Eukaryotic Complexes. Molecular and Cellular Proteomics, 2018, 17, 2387-2401.	2.5	14
67	Structural and Functional Characterization of a Phosphatase Domain within Yeast General Transcription Factor IIIC. Journal of Biological Chemistry, 2013, 288, 15110-15120.	1.6	13
68	Glycogen accumulation, central carbon metabolism, and aging of hematopoietic stem and progenitor cells. Scientific Reports, 2020, 10, 11597.	1.6	12
69	Protein co-membership and biochemical affinity purifications. Drug Discovery Today: Technologies, 2006, 3, 325-330.	4.0	6
70	Towards quantitative analysis of proteome dynamics. Nature Biotechnology, 2007, 25, 298-300.	9.4	6
71	CLICK-enabled analogues reveal pregnenolone interactomes in cancer and immune cells. IScience, 2021, 24, 102485.	1.9	6
72	Glucose Metabolism and Aging of Hematopoietic Stem and Progenitor Cells. International Journal of Molecular Sciences, 2022, 23, 3028.	1.8	6

#	Article	IF	CITATIONS
73	Coupling proteomics and metabolomics for the unsupervised identification of protein–metabolite interactions in Chaetomium thermophilum. PLoS ONE, 2021, 16, e0254429.	1.1	5
74	Network Biology editorial 2013. Molecular BioSystems, 2013, 9, 1557.	2.9	1
75	Proteomics Analysis of Cellular Network in Human Bone Marrow Reveals Lineage Skewing Towards Megakaryocytes and Decrease in Lymphoid Development upon Aging. Blood, 2016, 128, 2658-2658.	0.6	1
76	Elevated Central Carbon Metabolism - a Hallmark for Senescent Cells in Aging Human Hematopoietic Stem Cell Compartment. Blood, 2021, 138, 1088-1088.	0.6	1
77	The Ribomethylome Landscape of Hematopoietic System. Blood, 2020, 136, 41-42.	0.6	1
78	Expanding the frontiers in proteomics. Drug Discovery Today: Technologies, 2006, 3, 315-316.	4.0	0
79	Systemsâ€wide analysis of protein complexes in Saccharomyces cerevisiae. FASEB Journal, 2007, 21, A211.	0.2	Ο
80	Proteome Analyses and Single-Cell RNA Sequencing Reveal Age-Dependent Re-Wiring of Central Carbon Metabolism in Myeloid-Biased Subsets of Human Hematopoietic Stem Cells. Blood, 2018, 132, 873-873.	0.6	0
81	Title is missing!. , 2020, 15, e0242677.		Ο
82	Title is missing!. , 2020, 15, e0242677.		0
83	Title is missing!. , 2020, 15, e0242677.		Ο
84	Title is missing!. , 2020, 15, e0242677.		0
85	Title is missing!. , 2020, 15, e0242677.		0