
Josef Krysa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9534370/publications.pdf Version: 2024-02-01

LOSEE KDVSA

#	Article	IF	CITATIONS
1	Active carbon/TiO2 composites for photocatalytic decomposition of benzoic acid in water and toluene in air. Catalysis Today, 2022, 388-389, 417-423.	4.4	7
2	Photochemical stability of g-C3N4 in the gas phase. Journal of Environmental Chemical Engineering, 2022, , 107647.	6.7	3
3	p-CuO films and photoelectrochemical corrosion. Journal of Electroanalytical Chemistry, 2022, 919, 116555.	3.8	2
4	Scaling up anodic TiO2 nanotube layers – Influence of the nanotube layer thickness on the photocatalytic degradation of hexane and benzene. Applied Materials Today, 2022, 29, 101567.	4.3	6
5	Atomic layer deposited films of Al2O3 on fluorine-doped tin oxide electrodes: stability and barrier properties. Beilstein Journal of Nanotechnology, 2021, 12, 24-34.	2.8	1
6	Immobilization of Exfoliated g-C3N4 for Photocatalytical Removal of Organic Pollutants from Water. Catalysts, 2021, 11, 203.	3.5	4
7	Protection of hematite photoelectrodes by ALD-TiO2 capping. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 409, 113126.	3.9	7
8	Fe2O3 photoanodes: Photocorrosion protection by thin SnO2 and TiO2 films. Journal of Electroanalytical Chemistry, 2021, 892, 115282.	3.8	12
9	Active Sites in Heterogeneous Photocatalysis: Brief Notes on the Identification of Their Analogies with the Standard Heterogeneous Catalysis Concept. Chemical Engineering and Technology, 2021, 44, 2164.	1.5	0
10	Photocatalytic paints for NOx removal: Influence of various weathering conditions. Journal of Environmental Chemical Engineering, 2021, 9, 106172.	6.7	6
11	Reconstruction of SnO2 after cathodic polarization of FTO films - A simple way of fabricating orthorhombic SnO2. Materials Chemistry and Physics, 2021, 273, 125038.	4.0	3
12	Composite photocatalysts based on TiO2 – carbon for air pollutant removal: Aspects of adsorption. Catalysis Today, 2020, 340, 34-39.	4.4	22
13	Graphitic Carbon Nitride for Photocatalytic Air Treatment. Materials, 2020, 13, 3038.	2.9	14
14	Tailoring Photocatalytic Activity of TiO ₂ Nanosheets by ⁵⁷ Fe. Journal of Physical Chemistry C, 2020, 124, 6669-6682.	3.1	3
15	Semiconducting p-Type Copper Iron Oxide Thin Films Deposited by Hybrid Reactive-HiPIMS + ECWR and Reactive-HiPIMS Magnetron Plasma System. Coatings, 2020, 10, 232.	2.6	6
16	Transparent rutile TiO2 films prepared by thermal oxidation of sputtered Ti on FTO glass. Photochemical and Photobiological Sciences, 2019, 18, 891-896.	2.9	8
17	Hematite films by aerosol pyrolysis: Influence of substrate and photocorrosion suppression by TiO2 capping. Catalysis Today, 2019, 335, 418-422.	4.4	14
18	2D MoS ₂ nanosheets on 1D anodic TiO ₂ nanotube layers: an efficient co-catalyst for liquid and gas phase photocatalysis. Nanoscale, 2019, 11, 23126-23131.	5.6	34

#	Article	IF	CITATIONS
19	Photoelectrochemical properties of BiVO4 thin film photoanodes prepared by aerosol pyrolysis. Catalysis Today, 2019, 326, 30-35.	4.4	3
20	Photo-electrochemical stability of copper oxide photocathodes deposited by reactive high power impulse magnetron sputtering. Catalysis Today, 2019, 328, 29-34.	4.4	13
21	Composite materials based on active carbon/TiO2 for photocatalytic water purification. Catalysis Today, 2019, 328, 178-182.	4.4	23
22	Fe-Ti alloy layer plasma deposition – Monitoring of plasma parameters and properties of deposited alloys, anodization and photoelectrochemical characterization. Catalysis Today, 2018, 313, 239-244.	4.4	1
23	α-Fe2O3/TiO2 stratified photoanodes. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 366, 12-17.	3.9	14
24	N-Doped titanium dioxide nanosheets: Preparation, characterization and UV/visible-light activity. Applied Catalysis B: Environmental, 2018, 232, 397-408.	20.2	41
25	Preparation of Sn-doped semiconducting Fe2O3 (hematite) layers by aerosol pyrolysis. Catalysis Today, 2018, 313, 2-5.	4.4	8
26	Thermal sulfidation of α-Fe2O3 hematite to FeS2 pyrite thin electrodes: Correlation between surface morphology and photoelectrochemical functionality. Catalysis Today, 2018, 313, 224-230.	4.4	12
27	Scaling up anodic TiO2 nanotube layers for gas phase photocatalysis. Electrochemistry Communications, 2018, 97, 91-95.	4.7	37
28	Advanced oxidation processes for water/wastewater treatment. Environmental Science and Pollution Research, 2018, 25, 34799-34800.	5.3	14
29	Semi-automatic spray pyrolysis deposition of thin, transparent, titania films as blocking layers for dye-sensitized and perovskite solar cells. Beilstein Journal of Nanotechnology, 2018, 9, 1135-1145.	2.8	12
30	TiO2 Nanotubes on Transparent Substrates: Control of Film Microstructure and Photoelectrochemical Water Splitting Performance. Catalysts, 2018, 8, 25.	3.5	19
31	Smart inks as photocatalytic activity indicators of self-cleaning paints. Catalysis Today, 2017, 280, 8-13.	4.4	24
32	Transparent α-Fe 2 O 3 /TiO 2 nanotubular photoanodes. Catalysis Today, 2017, 287, 137-141.	4.4	4
33	Photoanodes based on TiO ₂ and α-Fe ₂ O ₃ for solar water splitting – superior role of 1D nanoarchitectures and of combined heterostructures. Chemical Society Reviews, 2017, 46, 3716-3769.	38.1	535
34	Hematite photoanodes for solar water splitting: Directly sputtered vs. anodically oxidized sputtered Fe. Catalysis Today, 2017, 287, 99-105.	4.4	14
35	Photoelectrochemical and structural properties of TiO 2 nanotubes and nanorods grown on FTO substrate: Comparative study between electrochemical anodization and hydrothermal method used for the nanostructures fabrication. Catalysis Today, 2017, 287, 130-136.	4.4	42
36	2D-Titanium dioxide nanosheets modified with Nd, Ag and Au: Preparation, characterization and photocatalytic activity. Catalysis Today, 2017, 281, 165-180.	4.4	30

#	Article	IF	CITATIONS
37	Self-organized transparent 1D TiO 2 nanotubular photoelectrodes grown by anodization of sputtered and evaporated Ti layers: A comparative photoelectrochemical study. Chemical Engineering Journal, 2017, 308, 745-753.	12.7	31
38	WO3 thin films prepared by sedimentation and plasma sputtering. Chemical Engineering Journal, 2017, 318, 281-288.	12.7	15
39	Transparent Nanotubular TiO2 Photoanodes Grown Directly on FTO Substrates. Molecules, 2017, 22, 775.	3.8	6
40	Role of ion bombardment, film thickness and temperature of annealing on PEC activity of very-thin film hematite photoanodes deposited by advanced magnetron sputtering. International Journal of Hydrogen Energy, 2016, 41, 11547-11557.	7.1	8
41	TiO2 and Fe2O3 Films for Photoelectrochemical Water Splitting. Molecules, 2015, 20, 1046-1058.	3.8	69
42	Insight into the photocatalytic activity of ZnCr–CO3 LDH and derived mixed oxides. Applied Catalysis B: Environmental, 2015, 170-171, 25-33.	20.2	80
43	Comparative study of TiO2 and ZnO photocatalysts for the enhancement of ozone generation by surface dielectric barrier discharge in air. Applied Catalysis A: General, 2015, 502, 122-128.	4.3	37
44	Photocatalytic degradation of acetone and methanol in a flow-through photoreactor with immobilized TiO2. Research on Chemical Intermediates, 2015, 41, 9233-9242.	2.7	9
45	Semiconducting WO3 thin films prepared by pulsed reactive magnetron sputtering. Research on Chemical Intermediates, 2015, 41, 9259-9266.	2.7	4
46	Anodic self-organized transparent nanotubular/porous hematite films from Fe thin-films sputtered on FTO and photoelectrochemical water splitting. Research on Chemical Intermediates, 2015, 41, 9333-9341.	2.7	17
47	Enhanced photocatalytic activity of silver-doped nanoparticulate TiO2 thin films with respect to the method of doping. Research on Chemical Intermediates, 2015, 41, 9343-9355.	2.7	8
48	Photo-electrochemical properties of WO3 particulate layers. Catalysis Today, 2015, 252, 162-167.	4.4	5
49	Weathering tests of photocatalytic facade paints containing ZnO and TiO2. Chemical Engineering Journal, 2015, 261, 83-87.	12.7	44
50	Quantum yield measurements for the photocatalytic oxidation of Acid Orange 7 (AO7) and reduction of 2,6-dichlorindophenol (DCIP) on transparent TiO2 films of various thickness. Catalysis Today, 2015, 240, 132-137.	4.4	10
51	On the improvement of PEC activity of hematite thin films deposited by high-power pulsed magnetron sputtering method. Applied Catalysis B: Environmental, 2015, 165, 344-350.	20.2	41
52	Photocatalytic and photoelectrochemical properties of sol–gel TiO2 films of controlled thickness and porosity. Catalysis Today, 2014, 230, 2-7.	4.4	22
53	Preparation of <scp>TiO</scp> ₂ â€ <scp>SiO</scp> ₂ composite photocatalysts for environmental applications. Journal of Chemical Technology and Biotechnology, 2014, 89, 1129-1135.	3.2	19
54	High-power pulsed plasma deposition of hematite photoanode for PEC water splitting. Catalysis Today, 2014, 230, 8-14.	4.4	32

#	Article	IF	CITATIONS
55	Photocatalytic activity indicator inks for probing a wide range of surfaces. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 290, 63-71.	3.9	35
56	Epoxy catalyzed sol–gel method for pinhole-free pyrite FeS2 thin films. Journal of Alloys and Compounds, 2014, 607, 169-176.	5.5	13
57	The influence of various deposition techniques on the photoelectrochemical properties of the titanium dioxide thin film. Journal of Sol-Gel Science and Technology, 2013, 65, 452-458.	2.4	12
58	A simple, inexpensive method for the rapid testing of the photocatalytic activity of self-cleaning surfaces. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 272, 18-20.	3.9	51
59	Photocatalytic degradation of several VOCs (n-hexane, n-butyl acetate and toluene) on TiO2 layer in a closed-loop reactor. Catalysis Today, 2013, 209, 153-158.	4.4	60
60	Photoactivity assessment of TiO2 thin films using Acid Orange 7 and 4-chlorophenol as model compounds. Part I: Key dependencies. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 250, 66-71.	3.9	18
61	Raman spectroscopy of dip-coated and spin-coated sol–gel TiO2 thin films on different types of glass substrate. Journal of Sol-Gel Science and Technology, 2012, 63, 294-306.	2.4	17
62	Photocatalytic behavior of nanosized TiO2 immobilized on layered double hydroxides by delamination/restacking process. Environmental Science and Pollution Research, 2012, 19, 3709-3718.	5.3	31
63	Electrochemical Properties of TiO2 Electrode Prepared by Various Methods. Procedia Engineering, 2012, 42, 573-580.	1.2	21
64	Quality improvement framework for major amputation: are we getting it right?. International Journal of Clinical Practice, 2012, 66, 1230-1234.	1.7	3
65	Notes on heterogeneous photocatalysis with the model azo dye acid orange 7 on TiO2. Reaction Kinetics, Mechanisms and Catalysis, 2012, 106, 297-311.	1.7	14
66	Ultrathin functional films of titanium(IV) oxide. Chemical Papers, 2012, 66, .	2.2	5
67	Introduction by the guest editors. Photochemical and Photobiological Sciences, 2011, 10, 331.	2.9	0
68	A novel sol-gel route to pinhole-free iron sulfide thin films. , 2011, , .		1
69	Critical assessment of suitable methods used for determination of antibacterial properties at photocatalytic surfaces. Journal of Hazardous Materials, 2011, 195, 100-106.	12.4	20
70	Effect of glass substrate and deposition technique on the properties of sol gel TiO2 thin films. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 222, 81-86.	3.9	35
71	Thin TiO2 films prepared by inkjet printing of the reverse micelles sol–gel composition. Sensors and Actuators B: Chemical, 2011, 160, 371-378.	7.8	32
72	A genuine way to mimic the solar-light conditions in UV driven heterogeneous photocatalytic reactions. Reaction Kinetics, Mechanisms and Catalysis, 2011, 104, 273-280.	1.7	1

#	Article	IF	CITATIONS
73	Oxalic acid sensors based on sol–gel nanostructured TiO2 films. Journal of Sol-Gel Science and Technology, 2011, 58, 175-181.	2.4	10
74	Photoelectrochemical properties of hierarchical nanocomposite structure: Carbon nanofibers/TiO2/ZnO thin films. Catalysis Today, 2011, 161, 8-14.	4.4	27
75	Photocatalytic properties of aqueous systems containing TiO2 nanoparticles. Catalysis Today, 2011, 161, 140-146.	4.4	7
76	Competitive adsorption and photodegradation of salicylate and oxalate on goethite. Catalysis Today, 2011, 161, 221-227.	4.4	15
77	Photocatalytic properties of different TiO2 thin films of various porosity and titania loading. Catalysis Today, 2011, 161, 29-34.	4.4	43
78	Degradation of organic pollutants in aquatic environment photoinduced by Fe(III)Cit complex: Impact of TiO2. Catalysis Today, 2011, 161, 127-132.	4.4	8
79	Notes on the photo-induced characteristics of transition metal-doped and undoped titanium dioxide thin films. Journal of Colloid and Interface Science, 2010, 348, 198-205.	9.4	69
80	Multilayer TiO2/SiO2 thin sol–gel films: Effect of calcination temperature and Na+ diffusion. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 216, 194-200.	3.9	27
81	Double hollow cathode plasma jet-low temperature method for the TiO2â^'N photoresponding films. Electrochimica Acta, 2010, 55, 1548-1556.	5.2	26
82	Photocatalytic activity of sol–gel TiO2 thin films deposited on soda lime glass and soda lime glass precoated with a SiO2 layer. Surface and Coatings Technology, 2010, 204, 2570-2575.	4.8	51
83	Effect of iron speciation on the photodegradation of Monuron in combined photocatalytic systems with immobilized or suspended TiO2. Environmental Chemistry Letters, 2009, 7, 127-132.	16.2	16
84	Role of the template molecular structure on the photo-electrochemical functionality of the sol–gel titania thin films. Journal of Sol-Gel Science and Technology, 2009, 52, 398-407.	2.4	27
85	Photocatalytic Degradation of Acid Orange 7 on TiO2 Films Prepared from Various Powder Catalysts. Catalysis Letters, 2009, 133, 160-166.	2.6	13
86	Photo-induced electrochemical functionality of the TiO2 nanoscale films. Electrochimica Acta, 2009, 54, 3352-3359.	5.2	34
87	Correlation of oxidative and reductive dye bleaching on TiO2 photocatalyst films. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 203, 119-124.	3.9	61
88	Atmospheric pressure barrier torch discharge and its optimization for flexible deposition of TiO2 thin coatings on various surfaces. Surface and Coatings Technology, 2009, 204, 667-675.	4.8	24
89	Advanced methods for titanium (IV) oxide thin functional coatings. Surface and Coatings Technology, 2008, 202, 2379-2383.	4.8	18
90	Singlet oxygen photogeneration efficiencies of a series of phthalocyanines in well-defined spectral regions. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 199, 267-273.	3.9	58

#	Article	IF	CITATIONS
91	Two-component transparent TiO2/SiO2 and TiO2/PDMS films as efficient photocatalysts for environmental cleaning. Applied Catalysis B: Environmental, 2008, 79, 179-185.	20.2	54
92	Molecular structure effects in photodegradation of phenol and its chlorinated derivatives with phthalocyanines. Applied Catalysis B: Environmental, 2008, 80, 321-326.	20.2	33
93	Electrochemical mass transfer modeling of a complex two phase heat transfer problem: Case of a prototype slagging gasifier. Russian Journal of Electrochemistry, 2008, 44, 413-423.	0.9	2
94	Photocatalytic Degradation of Dibutyl Phthalate: Effect of Catalyst Immobilization. Journal of Solar Energy Engineering, Transactions of the ASME, 2008, 130, .	1.8	7
95	Photoelectrochemical and photocatalytic properties of titanium (IV) oxide nanoparticulate layers. Thin Solid Films, 2007, 515, 8455-8460.	1.8	15
96	Electrochemically assisted photocatalysis on self-organized TiO2 nanotubes. Electrochemistry Communications, 2007, 9, 2822-2826.	4.7	145
97	Sulphonated phthalocyanines as effective oxidation photocatalysts for visible and UV light regions. Journal of Molecular Catalysis A, 2007, 272, 213-219.	4.8	49
98	Self-Organized TiO2 Nanotube Layers as Highly Efficient Photocatalysts. Small, 2007, 3, 300-304.	10.0	766
99	Effect of oxidisable substrates on the photoelectrocatalytic properties of thermally grown and particulate TiO2 layers. Journal of Applied Electrochemistry, 2007, 37, 1313-1319.	2.9	22
100	Non-Thermal Plasma and TiO2-Assistedn-Heptane Decomposition. Plasma Processes and Polymers, 2006, 3, 308-315.	3.0	20
101	Modelling natural convection at complex surfaces and solid bodies using electrochemical techniques and flow visualisation. Journal of Applied Electrochemistry, 2006, 37, 33-39.	2.9	4
102	Photocatalytic degradation of model organic pollutants on an immobilized particulate TiO2 layer. Applied Catalysis B: Environmental, 2006, 64, 290-301.	20.2	134
103	Free convective mass transfer at circular thin disk electrodes with varying inclination. International Journal of Heat and Mass Transfer, 2005, 48, 2323-2332.	4.8	8
104	Immobilized particulate TiO2 photocatalysts for degradation of organic pollutants. Electrochimica Acta, 2005, 50, 5255-5260.	5.2	50
105	The influence of Fe(III) speciation on supported TiO2 efficiency: example of monuron photocatalytic degradation. Applied Catalysis B: Environmental, 2005, 58, 185-191.	20.2	34
106	Mechanistic approach of the combined (iron–TiO2) photocatalytic system for the degradation of pollutants in aqueous solution: an attempt of rationalisation. Applied Catalysis B: Environmental, 2005, 57, 257-265.	20.2	46
107	Photocurrents and degradation rates on particulate TiO2 layers. Electrochimica Acta, 2005, 50, 4498-4504.	5.2	40
108	Homogeneous (Fe(III)) and heterogeneous (TiO2) photocatalytic systems for pollutant removal from the aquatic compartment: comparison and complementarity. Water Science and Technology, 2004, 49, 165-170.	2.5	5

#	Article	IF	CITATIONS
109	The effect of thermal treatment on the properties of TiO2 photocatalyst. Materials Chemistry and Physics, 2004, 86, 333-339.	4.0	60
110	Mineralisation of Monuron photoinduced by Fe(III) in aqueous solution. Chemosphere, 2004, 57, 1307-1315.	8.2	34
111	Comparative kinetic study of atrazine photodegradation in aqueous Fe(ClO4)3 solutions and TiO2 suspensions. Applied Catalysis B: Environmental, 2003, 40, 1-12.	20.2	42
112	Photoelectrochemical properties of sol-gel and particulateTiO2layers. International Journal of Photoenergy, 2003, 5, 115-122.	2.5	17
113	Free Convective Mass Transfer at Isosceles Triangular Surfaces of Varying Inclination. Collection of Czechoslovak Chemical Communications, 2003, 68, 2080-2092.	1.0	1
114	Free convective mass transfer at up-pointing truncated cones. Chemical Engineering Journal, 2002, 85, 147-151.	12.7	14
115	Free convective mass transfer at down-pointing truncated cones. International Journal of Heat and Fluid Flow, 2002, 23, 96-104.	2.4	4
116	Title is missing!. Journal of Applied Electrochemistry, 2002, 32, 591-596.	2.9	27
117	Photodegradation of metamitron (4-amino-6-phenyl-3-methyl-1,2,4-triazin-5(4H)-one) on TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 140, 93-98.	3.9	29
118	Free convective mass transfer in open upward-facing cylindrical cavities. Chemical Engineering Journal, 2000, 79, 179-186.	12.7	24
119	Structure and composition of zirconium oxide films formed in high pressure water with different Li+ concentration at 360°C. Materials Chemistry and Physics, 2000, 63, 1-8.	4.0	15
120	Title is missing!. Journal of Applied Electrochemistry, 2000, 30, 1033-1041.	2.9	13
121	Structure and Composition of Zircaloy-4 Surface Layers Formed in High Pressure Steam at 400°C and 450°C. Materials Science Forum, 2000, 321-324, 737-742.	0.3	2
122	Inactivation of bacteria by sun light in a solar reactor with Immobilised TiO ₂ . Toxicological and Environmental Chemistry, 1999, 71, 485-495.	1.2	1
123	Free convective mass transfer at up-pointing pyramids of constant inclined length. International Journal of Heat and Mass Transfer, 1999, 42, 3545-3548.	4.8	1
124	Title is missing!. Journal of Applied Electrochemistry, 1999, 29, 429-435.	2.9	20
125	Inactivation of microorganisms in a flow-through photoreactor with an immobilized TiO2 layer. Journal of Chemical Technology and Biotechnology, 1999, 74, 149-154.	3.2	43
126	Effect of coating thickness on the properties of IrO2–Ta2O5 anodes. Journal of Applied Electrochemistry, 1998, 28, 369-372.	2.9	29

#	Article	IF	CITATIONS
127	Title is missing!. Journal of Applied Electrochemistry, 1998, 28, 843-853.	2.9	29
128	Evaluation of parameters for anodic polarisation curve from the experimentally measured U–I dependence for an electrochemical photovoltaic regenerative solar cell. Solar Energy Materials and Solar Cells, 1998, 51, 155-169.	6.2	4
129	Corrosion of carbon–epoxy resin (C/E) and carbon–carbon (C/C) composites. Materials Chemistry and Physics, 1998, 57, 156-161.	4.0	9
130	Photocatalytic degradation of diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] on the layer of TiO2 particles in the batch mode plate film reactor. Journal of Chemical Technology and Biotechnology, 1998, 72, 169-175.	3.2	24
131	Free convective mass transfer at down-facing horizontal surfaces with free or collared edges. International Communications in Heat and Mass Transfer, 1998, 25, 175-182.	5.6	9
132	Free Convective Mass Transfer at Down-Pointing Isosceles Triangles of Varying Inclination. Collection of Czechoslovak Chemical Communications, 1998, 63, 2114-2122.	1.0	4
133	Free convective mass transfer at up-pointing pyramidal electrodes. International Journal of Heat and Mass Transfer, 1997, 40, 3717-3727.	4.8	8
134	Corrosion rate of titanium in H2SO4. Materials Chemistry and Physics, 1997, 48, 64-67.	4.0	32
135	Effect of coating thickness and surface treatment of titanium on the properties of IrO2-Ta2O5 anodes. Journal of Applied Electrochemistry, 1996, 26, 999-1005.	2.9	78
136	Free convective mass transfer at down-pointing pyramidal electrodes. International Journal of Heat and Mass Transfer, 1996, 39, 1297-1305.	4.8	4
137	Investigation of structure and composition of IrO2–Ta2O5surface layers. Acta Crystallographica Section A: Foundations and Advances, 1996, 52, C396-C396.	0.3	0
138	Experimental investigation of the double layer capacity, X-ray diffraction and the relative surface content of TiH2 during pretreatment of titanium used for the preparation of dimensionally stable anodes with RuO2 and/or IrO2 coating. Electrochimica Acta, 1995, 40, 1997-2003.	5.2	24
139	Influence of ion migration on cathodic reduction of hypochlorite anions. Electrochimica Acta, 1995, 40, 169-174.	5.2	7
140	Cathodic reduction of hypochlorite during reduction of dilute sodium chloride solution. Journal of Applied Electrochemistry, 1995, 25, 155.	2.9	16
141	Long service life IrO2/Ta2O5 electrodes for electroflotation. Journal of Applied Electrochemistry, 1994, 24, 1262-1266.	2.9	81
142	Free convective mass transfer at vertical cylindrical electrodes of varying aspect ratio. Journal of Applied Electrochemistry, 1992, 22, 429-436.	2.9	18