
Ann Friedman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9534223/publications.pdf Version: 2024-02-01

ΔΝΝ ΕΡΙΕΠΜΑΝ

#	Article	IF	CITATIONS
1	Differential impact of a dyskeratosis congenita mutation in TPP1 on mouse hematopoiesis and germline. Life Science Alliance, 2022, 5, e202101208.	2.8	2
2	Elucidating the Importance of DOT1L Recruitment in MLL-AF9 Leukemia and Hematopoiesis. Cancers, 2021, 13, 642.	3.7	8
3	TPP1 mutagenesis screens unravel shelterin interfaces and functions in hematopoiesis. JCI Insight, 2021, 6, .	5.0	11
4	SEC23A rescues SEC23B-deficient congenital dyserythropoietic anemia type II. Science Advances, 2021, 7, eabj5293.	10.3	4
5	The Endoplasmic Reticulum Cargo Receptor SURF4 Facilitates Efficient Erythropoietin Secretion. Molecular and Cellular Biology, 2020, 40, .	2.3	23
6	Early Notch Signals Induce a Pathogenic Molecular Signature during Priming of Alloantigen-Specific Conventional CD4+ T Cells in Graft-versus-Host Disease. Journal of Immunology, 2019, 203, 557-568.	0.8	10
7	The PAF1c Subunit CDC73 Is Required for Mouse Hematopoietic Stem Cell Maintenance but Displays Leukemia-Specific Gene Regulation. Stem Cell Reports, 2019, 12, 1069-1083.	4.8	14
8	A Genome Scale CRISPR Screen Identifies the ER Cargo Receptor That Facilitates the Efficient Secretion of Erythropoietin. Blood, 2019, 134, 340-340.	1.4	0
9	Functional Overlap between the SEC23 Paralogs Suggests a Novel Treatment Paradigm for Congenital Dyserythropoietic Anemia Type II. Blood, 2019, 134, 2221-2221.	1.4	0
10	Notch signaling mediated by Delta-like ligands 1 and 4 controls the pathogenesis of chronic GVHD in mice. Blood, 2018, 132, 2188-2200.	1.4	30
11	The Trithorax-Group Protein ASH1L Regulates Hematopoietic Stem Cell Homeostasis Independently of Its Histone Methyltransferase Activity. Blood, 2018, 132, 1270-1270.	1.4	2
12	The PAF1c Subunit Cdc73 Is Essential for Hematopoiesis and Displays Differential Gene Regulation in MLL-AF9 Driven Leukemia. Blood, 2018, 132, 1280-1280.	1.4	0
13	Donor T Cells Require Notch Signals but Not Alloantigen Presentation from Specialized Secondary Lymphoid Organ Fibroblasts to Drive Graft-Versus-Host Disease. Blood, 2018, 132, 810-810.	1.4	0
14	Fucosylation Deficiency in Mice Leads to Colitis andÂAdenocarcinoma. Gastroenterology, 2017, 152, 193-205.e10.	1.3	48
15	Fibroblastic niches prime T cell alloimmunity through Delta-like Notch ligands. Journal of Clinical Investigation, 2017, 127, 1574-1588.	8.2	72
16	Notch Signaling Mediated By Dll1/4 Notch Ligands Controls the Pathogenesis of Both Multi-Organ System Non-Sclerodermatous and Sclerodermatous Chronic Graft-Versus-Host Disease. Blood, 2016, 128, 805-805.	1.4	6
17	Transient Blockade of Delta-like Notch Ligands Prevents Allograft Rejection Mediated by Cellular and Humoral Mechanisms in a Mouse Model of Heart Transplantation. Journal of Immunology, 2015, 194, 2899-2908.	0.8	30
18	Hematopoietic stem cells are acutely sensitive to Acd shelterin gene inactivation. Journal of Clinical Investigation, 2014, 124, 353-366.	8.2	15

Ann Friedman

#	Article	IF	CITATIONS
19	T Cell–Specific Notch Inhibition Blocks Graft-versus-Host Disease by Inducing a Hyporesponsive Program in Alloreactive CD4+ and CD8+ T Cells. Journal of Immunology, 2013, 190, 5818-5828.	0.8	50
20	Blockade of individual Notch ligands and receptors controls graft-versus-host disease. Journal of Clinical Investigation, 2013, 123, 1590-1604.	8.2	139
21	Delta-Like Notch Ligands Expressed By Host Non-Hematopoietic Radioresistant Cells Regulate Graft-Versus-Host Disease and Extrathymic T Cell Development After Bone Marrow Transplantation. Blood, 2013, 122, 2003-2003.	1.4	19
22	Notch Inhibition in Alloreactive CD4+ and CD8+ T Cells Blocks Graft-Versus-Host Disease by Inducing a Hyporesponsive Program with Features of T Cell Anergy. Blood, 2012, 120, 340-340.	1.4	0
23	Notch signaling is a critical regulator of allogeneic CD4+ T-cell responses mediating graft-versus-host disease. Blood, 2011, 117, 299-308.	1.4	114
24	The Trithorax Group Protein Ash1l Is An Essential Epigenetic Regulator of Adult Hematopoietic Stem Cell Maintenance. Blood, 2011, 118, 387-387.	1.4	0
25	In Vivo Blockade of Individual Notch Ligands and Receptors Provides a New Targeted Therapeutic Approach In Graft-Versus-Host Disease. Blood, 2011, 118, 819-819.	1.4	Ο
26	Hematopoietic Defects In ACD/TPP1-Deficient Mice Reveal An Essential Role for the Shelterin Complex In Blood-Forming Stem Cell Homeostasis. Blood, 2010, 116, 882-882.	1.4	1
27	Menin regulates the function of hematopoietic stem cells and lymphoid progenitors. Blood, 2009, 113, 1661-1669.	1.4	35
28	Inhibition of Notch Signaling in T Cells Prevents Immune-Mediated Bone Marrow Failure Blood, 2009, 114, 180-180.	1.4	1
29	Notch Signaling Is a Critical Regulator of Allogeneic T Cell Responses Mediating Graft-Versus-Host Disease Blood, 2009, 114, 230-230.	1.4	Ο