Yi-Xiang Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/953418/publications.pdf

Version: 2024-02-01

61857 95083 5,895 128 43 68 citations h-index g-index papers 130 130 130 4886 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Frontiers in circularly polarized luminescence: molecular design, self-assembly, nanomaterials, and applications. Science China Chemistry, 2021, 64, 2060-2104.	4.2	248
2	Visibleâ€Light Photoredoxâ€Catalyzed Câ°'H Difluoroalkylation of Hydrazones through an Aminyl Radical/Polar Mechanism. Angewandte Chemie - International Edition, 2016, 55, 2939-2943.	7.2	176
3	A Highly Selective Fluorescenceâ€Based Polymer Sensor Incorporating an (<i>R</i> , <i>R</i>)â€Salen Moiety for Zn ²⁺ Detection. Chemistry - A European Journal, 2010, 16, 12898-12903.	1.7	138
4	Chiral sensing for induced circularly polarized luminescence using an Eu(iii)-containing polymer and d- or l-proline. Chemical Communications, 2013, 49, 5772.	2.2	134
5	Effective structural modification of traditional fluorophores to obtain organic mechanofluorochromic molecules. Journal of Materials Chemistry C, 2018, 6, 5075-5096.	2.7	127
6	A highly selective and sensitive polymer-based OFF-ON fluorescent sensor for Hg ²⁺ detection incorporating salen and perylenyl moieties. Journal of Materials Chemistry, 2012, 22, 478-482.	6.7	126
7	Circularly polarized luminescence of AIE-active chiral O-BODIPYs induced via intramolecular energy transfer. Chemical Communications, 2015, 51, 9014-9017.	2.2	124
8	Strong CPL of achiral AIE-active dyes induced by supramolecular self-assembly in chiral nematic liquid crystals (AIE-N*-LCs). Chemical Communications, 2019, 55, 5179-5182.	2.2	109
9	A visible-light-promoted aerobic C–H/C–N cleavage cascade to isoxazolidine skeletons. Chemical Science, 2013, 4, 1281.	3.7	104
10	High Brightness Circularly Polarized Organic Light-Emitting Diodes Based on Nondoped Aggregation-Induced Emission (AIE)-Active Chiral Binaphthyl Emitters. Organic Letters, 2019, 21, 439-443.	2.4	101
11	Dual resonance energy transfer in triple-component polymer dots to enhance electrochemiluminescence for highly sensitive bioanalysis. Chemical Science, 2019, 10, 6815-6820.	3.7	92
12	Aggregation-induced circularly polarized luminescence of an (R)-binaphthyl-based AIE-active chiral conjugated polymer with self-assembled helical nanofibers. Polymer Chemistry, 2015, 6, 2416-2422.	1.9	91
13	Circularly Polarized Electroluminescence of Thermally Activated Delayed Fluorescence-Active Chiral Binaphthyl-Based Luminogens. ACS Applied Materials & Samp; Interfaces, 2019, 11, 26165-26173.	4.0	90
14	Visibleâ€Lightâ€Induced Radical Tandem Aryldifluoroacetylation of Cinnamamides: Access to Difluoroacetylated Quinoloneâ€2â€ones And 1â€Azaspiro[4.5]decanes. Advanced Synthesis and Catalysis, 2015, 357, 3057-3063.	2.1	89
15	Aggregation-Induced Fluorescence Emission Properties of Dicyanomethylene-1,4-dihydropyridine Derivatives. Journal of Physical Chemistry C, 2015, 119, 6737-6748.	1.5	89
16	A Scalable, Efficient Gold atalyzed Oxidative Phosphonation of <i>sp</i> ³ CH Bonds using Air as Sustainable Oxidant. Advanced Synthesis and Catalysis, 2012, 354, 1646-1650.	2.1	88
17	Regulating Circularly Polarized Luminescence Signals of Chiral Binaphthyl-Based Conjugated Polymers by Tuning Dihedral Angles of Binaphthyl Moieties. Macromolecules, 2016, 49, 5444-5451.	2.2	86
18	Strong Aggregationâ€Induced CPL Response Promoted by Chiral Emissive Nematic Liquid Crystals (N*â€LCs). Chemistry - A European Journal, 2018, 24, 12607-12612.	1.7	85

#	Article	IF	Citations
19	Donor–Acceptor Conjugated Polymer Dots for Tunable Electrochemiluminescence Activated by Aggregation-Induced Emission-Active Moieties. Journal of Physical Chemistry Letters, 2018, 9, 5296-5302.	2.1	83
20	Microwave-assisted preparation of N-doped carbon dots as a biosensor for electrochemical dopamine detection. Journal of Colloid and Interface Science, 2015, 452, 199-202.	5.0	82
21	Multi-Stimulus-Responsive Fluorescent Properties of Donor-Ï€-Acceptor Indene-1,3-dionemethylene-1,4-dihydropyridine Derivatives. Journal of Physical Chemistry C, 2015, 119, 23138-23148.	1.5	82
22	Reversal Circularly Polarized Luminescence of AlEâ€Active Chiral Binaphthyl Molecules from Solution to Aggregation. Chemistry - A European Journal, 2015, 21, 13196-13200.	1.7	78
23	N-doped carbon dots synthesized by rapid microwave irradiation as highly fluorescent probes for Pb ²⁺ detection. New Journal of Chemistry, 2015, 39, 3357-3360.	1.4	77
24	Silole-Containing Polymer Nanodot: An Aqueous Low-Potential Electrochemiluminescence Emitter for Biosensing. Analytical Chemistry, 2016, 88, 845-850.	3.2	77
25	A tetraphenylethene-based chiral polymer: an AIE luminogen with high and tunable CPL dissymmetry factor. Journal of Materials Chemistry C, 2013, 1, 4713.	2.7	76
26	DOX Loaded Aggregation-induced Emission Active Polymeric Nanoparticles as a Fluorescence Resonance Energy Transfer Traceable Drug Delivery System for Self-indicating Cancer Therapy. Acta Biomaterialia, 2019, 85, 218-228.	4.1	72
27	Doping-free circularly polarized electroluminescence of AIE-active chiral binaphthyl-based polymers. Chemical Communications, 2018, 54, 9663-9666.	2.2	70
28	Tetraethylammonium Bromideâ€Catalyzed Oxidative Thioesterification of Aldehydes and Alcohols. Advanced Synthesis and Catalysis, 2013, 355, 3558-3562.	2.1	68
29	Indene-1,3-dionemethylene-4H-pyran derivatives containing alkoxy chains of various lengths: aggregation-induced emission enhancement, mechanofluorochromic properties and solvent-induced emission changes. Journal of Materials Chemistry C, 2016, 4, 2862-2870.	2.7	68
30	Electrochemiluminescent resonance energy transfer of polymer dots for aptasensing. Biosensors and Bioelectronics, 2018, 100, 28-34.	5. 3	67
31	Strong and Reversible Circularly Polarized Luminescence Emission of a Chiral 1,8â€Naphthalimide Fluorophore Induced by Excimer Emission and Orderly Aggregation. Chemistry - A European Journal, 2016, 22, 9519-9522.	1.7	66
32	Strong circularly polarized luminescence induced from chiral supramolecular assembly of helical nanorods. Chemical Communications, 2017, 53, 7505-7508.	2.2	65
33	The amplified circularly polarized luminescence regulated from D–A type AIE-active chiral emitters <i>via</i> liquid crystals system. Chemical Communications, 2020, 56, 1117-1120.	2.2	58
34	Ultrastrong Red Circularly Polarized Luminescence Promoted from Chiral Transfer and Intermolecular Förster Resonance Energy Transfer in Ternary Chiral Emissive Nematic Liquid Crystals. Journal of Physical Chemistry Letters, 2021, 12, 598-603.	2.1	58
35	Relay Visible-Light Photoredox Catalysis: Synthesis of Pyrazole Derivatives via Formal [4 + 1] Annulation and Aromatization. Organic Letters, 2017, 19, 214-217.	2.4	55
36	Synthesis and tunable chiroptical properties of chiral BODIPY-based D–π–A conjugated polymers. Journal of Materials Chemistry C, 2014, 2, 1076-1084.	2.7	54

#	Article	IF	CITATIONS
37	Aza-BODIPY-based D–π–A conjugated polymers with tunable band gap: synthesis and near-infrared emission. Polymer Chemistry, 2013, 4, 520-527.	1.9	51
38	Fluorescence Study of Chiral βâ€Ketoiminateâ€Based Newly Synthesized Boron Hybrid Polymers. Macromolecular Chemistry and Physics, 2014, 215, 358-364.	1.1	50
39	Polymerâ€based fluorescence sensors incorporating chiral binaphthyl and benzo[2,1,3]thiadiazole moieties for Hg ²⁺ detection. Journal of Polymer Science Part A, 2010, 48, 997-1006.	2.5	49
40	Mechanochromic and acidochromic response of 4H-pyran derivatives with aggregation-induced emission properties. Dyes and Pigments, 2017, 141, 428-440.	2.0	48
41	Strong CPL of achiral liquid crystal fluorescent polymer <i>via</i> the regulation of AIE-active chiral dopant. Chemical Communications, 2020, 56, 12829-12832.	2.2	48
42	Visible-light-induced three-component 1,2-difluoroalkylarylation of styrenes with $\hat{l}\pm$ -carbonyl difluoroalkyl bromides and indoles. Organic Chemistry Frontiers, 2016, 3, 1443-1446.	2.3	46
43	Rhodium atalyzed Direct C7 Alkynylation of Indolines. Advanced Synthesis and Catalysis, 2015, 357, 1149-1153.	2.1	45
44	Circularly polarized luminescence based chirality transfer of the chiral BINOL moiety via rigid π-conjugation chain backbone structures. Polymer Chemistry, 2017, 8, 1555-1561.	1.9	45
45	Polymorphism and mechanochromism of N-alkylated 1,4-dihydropyridine derivatives containing different electron-withdrawing end groups. Journal of Materials Chemistry C, 2017, 5, 5183-5192.	2.7	45
46	5-(2,6-Bis((E)-4-(dimethylamino)styryl)-1-ethylpyridin-4(1H)-ylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione: aggregation-induced emission, polymorphism, mechanochromism, and thermochromism. Journal of Materials Chemistry C, 2017, 5, 9264-9272.	2.7	45
47	An Efficient Electrochemiluminescence Enhancement Strategy on Bipolar Electrode for Bioanalysis. Analytical Chemistry, 2019, 91, 12553-12559.	3.2	45
48	Organocatalytic Enantioselective Sulfenylation of βâ€Keto Phosphonates: A Convenient Approach to Construct Hetero―Quaternary Stereocenters. Advanced Synthesis and Catalysis, 2011, 353, 545-549.	2.1	44
49	Amplified Circularly Polarized Electroluminescence Behavior Triggered by Helical Nanofibers from Chiral Coâ€assembly Polymers. Angewandte Chemie - International Edition, 2022, 61, .	7.2	44
50	A chiral ionic polymer for direct visual enantioselective recognition of \hat{l}_{\pm} -amino acid anions. Chemical Communications, 2013, 49, 2891.	2.2	43
51	Color-tunable AIE-active conjugated polymer nanoparticles as drug carriers for self-indicating cancer therapy <i>via</i> intramolecular FRET mechanism. Polymer Chemistry, 2018, 9, 3205-3214.	1.9	43
52	Inverted Circularly Polarized Luminescence Behavior Induced by Helical Nanofibers through Chiral Co-Assembly from Achiral Liquid Crystal Polymers and Chiral Inducers. ACS Nano, 2022, 16, 3173-3181.	7.3	42
53	Far-red/near-infrared fluorescent conjugated polymer nanoparticles with size-dependent chirality and cell imaging applications. Polymer Chemistry, 2015, 6, 3962-3969.	1.9	41
54	Strong circularly polarized electroluminescence based on chiral salen-Zn(<scp>ii</scp>) complex monomer chromophores. Materials Chemistry Frontiers, 2019, 3, 867-873.	3.2	41

#	Article	IF	CITATIONS
55	Recyclable CPL switch regulated by using an applied DC electric field from chiral nematic liquid crystals (N*-LCs). Materials Chemistry Frontiers, 2020, 4, 2954-2961.	3.2	41
56	Ultrasensitive Nucleic Acid Assay Based on Cyclometalated Iridium(III) Complex with High Electrochemiluminescence Efficiency. Analytical Chemistry, 2021, 93, 1686-1692.	3.2	41
57	In Situ Generated 1:1 Zn(II)-Containing Polymer Complex Sensor for Highly Enantioselective Recognition of N-Boc-Protected Alanine. Macromolecules, 2012, 45, 7835-7842.	2.2	40
58	Red colored CPL emission of chiral 1,2-DACH-based polymers via chiral transfer of the conjugated chain backbone structure. Polymer Chemistry, 2015, 6, 6802-6805.	1.9	39
59	Photoredox Divergent 1,2-Difunctionalization of Alkenes with <i>gem</i> -Dibromides. Organic Letters, 2017, 19, 6452-6455.	2.4	39
60	High brightness circularly polarized blue emission from non-doped OLEDs based on chiral binaphthyl-pyrene emitters. Chemical Communications, 2019, 55, 9845-9848.	2.2	39
61	Piezochromism, acidochromism, solvent-induced emission changes and cell imaging of D-Ï∈-A 1,4-dihydropyridine derivatives with aggregation-induced emission properties. Dyes and Pigments, 2016, 133, 261-272.	2.0	38
62	Rhenium-Catalyzed Acceptorless Dehydrogenative Coupling via Dual Activation of Alcohols and Carbonyl Compounds. ACS Catalysis, 2013, 3, 2195-2198.	5.5	37
63	CO-enabled rhenium hydride catalyst for directed C(sp ²)â€"H bond alkylation with olefins. Organic Chemistry Frontiers, 2015, 2, 378-382.	2.3	37
64	A New Chiral Binaphthaleneâ€Based Fluorescence Polymer Sensor for the Highly Enantioselective Recognition of Phenylalaninol. Chemistry - A European Journal, 2013, 19, 16066-16071.	1.7	36
65	Conjugated polymer nanoparticles with aggregation induced emission characteristics for intracellular <scp>F</scp> e ³⁺ sensing. Journal of Polymer Science Part A, 2016, 54, 1686-1693.	2.5	34
66	The functionalization of a cascade of C(sp ²)â€"H/C(sp ³)â€"H bonds: synthesis of fused dihydropyrazoles via visible-light photoredox catalysis. Chemical Communications, 2016, 52, 11901-11904.	2.2	34
67	Trace Ir(III) complex enhanced electrochemiluminescence of AIE-active Pdots in aqueous media. Science China Chemistry, 2020, 63, 715-721.	4.2	34
68	The effect of N-alkyl chain length on the photophysical properties of indene-1,3-dionemethylene-1,4-dihydropyridine derivatives. Journal of Materials Chemistry C, 2016, 4, 5970-5980.	2.7	33
69	Reversal aggregation-induced circular dichroism from axial chirality transfer via self-assembled helical nanowires. RSC Advances, 2017, 7, 15851-15856.	1.7	33
70	Amplification effect of circularly polarized luminescence induced from binaphthyl-based zinc(<scp>ii</scp>) chiral coordination polymers. Materials Chemistry Frontiers, 2018, 2, 554-558.	3.2	33
71	Aggregation-Induced Electrochemiluminescence of Conjugated Pdots Containing a Trace Ir(III) Complex: Insights into Structure–Property Relationships. ACS Applied Materials & Interfaces, 2020, 12, 54012-54019.	4.0	33
72	Synthesis and characterization of chiral polymer complexes incorporating polybinaphthyls, bipyridine, and Eu(III). Journal of Polymer Science Part A, 2007, 45, 650-660.	2.5	32

#	Article	IF	CITATIONS
73	Synthesis and Fluorescence Properties of Chiral Nearâ€Infrared Emissive Polymers Incorporating BODIPY Derivatives and (<i>S</i>)â€Binaphthyl. Macromolecular Chemistry and Physics, 2012, 213, 2238-2245.	1.1	30
74	Circularly polarized luminescence of chiral 1,8-naphthalimide-based pyrene fluorophore induced via supramolecular self-assembly. Journal of Materials Chemistry C, 2017, 5, 6030-6036.	2.7	30
75	Fullâ€Color and White Circularly Polarized Luminescence Promoted by Liquid Crystal Selfâ€Assembly Containing Chiral Naphthalimide Dyes. Advanced Optical Materials, 2021, 9, 2100961.	3.6	30
76	A photosensitive-type CPL response controlled by intermolecular dynamic FRET and chiral transfer in ternary chiral emissive nematic liquid crystals. Journal of Materials Chemistry C, 2021, 9, 12590-12595.	2.7	30
77	Polymerâ€based colorimetric and "turn off―fluorescence sensor incorporating benzo[2,1,3]thiadiazole moiety for Hg ²⁺ Detection. Journal of Polymer Science Part A, 2012, 50, 517-522.	2.5	29
78	A study on tunable AIE (AIEE) of boron ketoiminate-based conjugated polymers for live cell imaging. Polymer Chemistry, 2015, 6, 5070-5076.	1.9	29
79	Organocatalytic Asymmetric CS Bond Formation: Synthesis of αâ€Methyleneâ€Î²â€mercapto Esters with Simple Alkyl Thiols. Advanced Synthesis and Catalysis, 2011, 353, 3301-3306.	2.1	28
80	Selective Saccharide Recognition Using Modular Diboronic Acid Fluorescent Sensors. European Journal of Organic Chemistry, 2012, 2012, 1223-1229.	1.2	28
81	Imidazolium Ionâ€Tagged Proline Organocatalyst for αâ€Aminoxylation of Aldehydes and Ketones in Ionic Liquids. Advanced Synthesis and Catalysis, 2010, 352, 108-112.	2.1	27
82	Near-infrared emission of novel bent-core V-shaped conjugated polymers based on the B,O-chelated azadipyrromethene structure. Polymer Chemistry, 2013, 4, 4396.	1.9	27
83	High brightness circularly polarized electroluminescence from conjugated polymer F8BT induced by chiral binaphthyl-pyrene. Journal of Materials Chemistry C, 2020, 8, 15669-15676.	2.7	27
84	A Fluorescent Chemosensor for Transitionâ€Metal Ions Based on Optically Active Polybinaphthyl and 2,2′â€Bipyridine. Macromolecular Chemistry and Physics, 2008, 209, 685-694.	1.1	26
85	A highly regioselective sp3 C–H amination of tertiary amides based on Fe(ii) complex catalysts. RSC Advances, 2012, 2, 6733.	1.7	26
86	High Green Brightness Circularly Polarized Electroluminescence Regulated by Rigid Chiral D-A Type Emitters. Journal of Physical Chemistry C, 2019, 123, 24746-24753.	1.5	26
87	A New Polymer-Based Fluorescent Chemosensor Incorporating Propane-1,3-Dione and 2,5-Diethynylbenzene Moieties for Detection of Copper(II) and Iron(III). Polymers, 2017, 9, 267.	2.0	25
88	A Highly Sensitive and Selective Fluorescence Chemosensor for Cu ²⁺ and Zn ²⁺ Based on Solvent Effect. Chinese Journal of Chemistry, 2013, 31, 195-199.	2.6	24
89	A coumarin-based chiral fluorescence sensor for the highly enantioselective recognition of phenylalaninol. New Journal of Chemistry, 2013, 37, 317-322.	1.4	24
90	(S)-BINOL-based boronic ester fluorescence sensors for enantioselective recognition of α-phenylethylamine and phenylglycinol. RSC Advances, 2014, 4, 5887.	1.7	24

#	Article	IF	CITATIONS
91	Tunable AICPL of (⟨i⟩S⟨/i⟩)â€Binaphthylâ€Based Threeâ€Component Polymers via FRET Mechanism. Macromolecular Rapid Communications, 2017, 38, 1700150.	2.0	24
92	Solutionâ€Processed White Circularly Polarized Organic Lightâ€Emitting Diodes Based on Chiral Binaphthyl Emitters. Chemistry - A European Journal, 2021, 27, 589-593.	1.7	24
93	Circularly polarized electroluminescence from an achiral fluorophore induced by co-assembly with chiral polymers. Journal of Materials Chemistry C, 2021, 9, 12141-12147.	2.7	24
94	The Au(iii)-catalyzed coupling reactions between alcohols and N-heterocycles via C–H bond activation. RSC Advances, 2012, 2, 10496.	1.7	23
95	Tunable aggregation-induced circularly polarized luminescence of chiral AIEgens <i>via</i> the regulation of mono-/di-substituents of molecules or nanostructures of self-assemblies. Materials Chemistry Frontiers, 2019, 3, 2066-2071.	3.2	23
96	Polybinaphthyls incorporating chiral 2,2′-binaphthyl and isoquinoline moieties by Sonogashira reaction. Polymer, 2006, 47, 6598-6605.	1.8	22
97	Controllable Circularly Polarized Electroluminescence Performance Improved by the Dihedral Angle of Chiral-Bridged Binaphthyl-Type Dopant Inducers. ACS Applied Materials & Samp; Interfaces, 2021, 13, 55420-55427.	4.0	22
98	Dynamic Circularly Polarized Luminescence with Tunable Handedness and Intensity Enabled by Achiral Dichroic Dyes in Cholesteric Liquid Crystal Medium. Advanced Materials, 2022, 34, e2202309.	11.1	22
99	A helical chiral polymer-based chromo-fluorescence and CD response sensor for selective detection of trivalent cations. Journal of Polymer Science Part A, 2013, 51, 4070-4075.	2.5	21
100	Circularly Polarized Luminescence of Chiral Perylene Diimide Based Enantiomers Triggered by Supramolecular Selfâ€Assembly. Chemistry - A European Journal, 2016, 22, 12910-12915.	1.7	21
101	Harnessing sunlight without a photosensitizer for highly efficient consecutive [3+2]/[4+2] annulation to synthesize fused benzobicyclic skeletons. Chemical Communications, 2017, 53, 10707-10710.	2.2	20
102	Amplified electrochemiluminescence signals promoted by the AIE-active moiety of Dâ \in A type polymer dots for biosensing. Analyst, The, 2020, 145, 233-239.	1.7	20
103	Strongâ€Induced CPL Emission Promoted from Achiral Conjugated Polymerâ€Containing Emissive Nematic Liquid Crystals (Pâ€N*â€LCs). Macromolecular Rapid Communications, 2021, 42, e2000548.	2.0	18
104	CPL emission of chiral BINOL-based polymers via chiral transfer of the conjugated chain backbone structure. RSC Advances, 2015, 5, 105851-105854.	1.7	17
105	Synthesis and Characterization of Polybinaphthyls Incorporating Chiral (R) or (S)-2,2′-Binaphthyl Entities by Heck Reaction. Polymer Journal, 2005, 37, 355-362.	1.3	16
106	<i>In Situ</i> Formed Bifunctional Primary Amineâ€Imine Catalyst: Application to the Construction of Chiral Tertiary Alcohols through Asymmetric Aldolâ€Type Reaction. Advanced Synthesis and Catalysis, 2013, 355, 2029-2036.	2.1	16
107	Standard White CPâ€OLEDs Performance Achieved by Intramolecular Chirality Transfer Mechanism through Polymer Chain. Advanced Optical Materials, 2022, 10, .	3.6	16
108	Deep Blue Circularly Polarized Luminescence Response Behavior of an Achiral Pyrene-Based Emitter Regulated by Chiral Co-assembly Helical Nanofibers. Journal of Physical Chemistry Letters, 2021, 12, 3767-3772.	2.1	15

7

#	Article	IF	CITATIONS
109	Tuning chromaticity based on energy transfer from the conjugated polymer to the Eu(TTA)3 moiety. Polymer Chemistry, 2012, 3, 2578.	1.9	14
110	Molecular Engineering of Polymer Dots for Electrochemiluminescence Emission. ACS Applied Nano Materials, 2021, 4, 7244-7252.	2.4	14
111	Amplified Circularly Polarized Electroluminescence Behavior Triggered by Helical Nanofibers from Chiral Coâ€assembly Polymers. Angewandte Chemie, 0, , .	1.6	14
112	Fluorescent chemosensor based on the conjugated polymer incorporating 2,2′â€bipyridyl moiety for transition metal ions. Journal of Applied Polymer Science, 2009, 111, 3137-3143.	1.3	13
113	Chiral sensing of Eu(III)â€containing achiral polymer complex from chiral amino acids coordination induction. Journal of Polymer Science Part A, 2014, 52, 3080-3086.	2.5	13
114	Synthesis and fluorescence study of conjugated polymers based on 2,4,6-triphenylpyridine moieties. New Journal of Chemistry, 2016, 40, 6281-6288.	1.4	13
115	AIE-active conjugated polymer nanoparticles with red-emission for in vitro and in vivo imaging. RSC Advances, 2016, 6, 114580-114586.	1.7	12
116	The amplified circularly polarized luminescence emission response of chiral 1,1′â€binaphtholâ€based polymers via Zn(II)â€coordination fluorescence enhancement. Journal of Polymer Science Part A, 2018, 56, 1282-1288.	2.5	11
117	Synthesis and enantioselectivities of soluble polymers incorporating optically active binaphthyl and binaphthol. Journal of Applied Polymer Science, 2007, 106, 821-827.	1.3	10
118	A novel lowâ€bandgap conjugated polymer based on Ru(II) bis(acetylide) complex and BODIPY moieties. Journal of Polymer Science Part A, 2014, 52, 1686-1692.	2.5	10
119	A fluorescent chemosensor based on optically active 2,2′â€binaphthoâ€20â€crownâ€6 for metal ions. Polymer International, 2010, 59, 712-718.	1.6	9
120	â€~Click'-BINOL based chiral ionic polymers for highly enantioselective recognition of tryptophan anions. Polymer Chemistry, 2014, 5, 5218.	1.9	6
121	Tunable Al-CPL behavior by regulation of microstructure of AlE-active isomers through chiral emissive liquid crystals. Dyes and Pigments, 2021, 186, 109001.	2.0	6
122	Central-to-Axial Chirality Transfer-Induced CD Sensor for Chiral Recognition and <i>ee</i> Value Detection of 1,2-DACH Enantiomers. Macromolecular Chemistry and Physics, 2015, 216, 1925-1929.	1.1	5
123	The amplified electrochemiluminescence response signal promoted by the Ir(<scp>iii</scp>)-containing polymer complex. Analyst, The, 2018, 143, 2405-2410.	1.7	5
124	Chiral binaphthylamine based emitters with donor-acceptor structures: Facile synthesis and circularly polarized luminescence. Dyes and Pigments, 2022, 199, 110085.	2.0	4
125	Investigation of the effect of hapten heterology in the enzyme-linked immunosorbent assay for Sudan I. Food and Agricultural Immunology, 2015, 26, 13-25.	0.7	3
126	Fluorescence upconversion properties of a chiral polybinaphthyl induced by twoâ€photon absorption. Journal of Applied Polymer Science, 2012, 124, 2867-2870.	1.3	2

#	Article	IF	CITATIONS
127	Synthesis and Characterization of 2-Alkylbenzotriazole-Based Donor-Ï€-Acceptor-Type Copolymers. Synlett, 2013, 24, 1505-1508.	1.0	2
128	Strong CPL-active liquid crystal materials induced by intermolecular hydrogen-bonding interaction and a chirality induction mechanism. Soft Matter, 2022, 18, 477-481.	1.2	2