Bret Cooper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9534136/publications.pdf Version: 2024-02-01

RDET COODED

#	Article	IF	CITATIONS
1	Salicylic Acid and Phytoalexin Induction by a Bacterium that Causes Halo Blight in Beans. Phytopathology, 2022, , .	2.2	3
2	Proteomic Identification and Meta-Analysis in Salvia hispanica RNA-Seq de novo Assemblies. Plants, 2021, 10, 765.	3.5	2
3	Genomic Resources for Pseudomonas savastanoi pv. phaseolicola Races 5 and 8. Phytopathology, 2021, 111, 893-895.	2.2	3
4	Bacterial Immobilization and Toxicity Induced by a Bean Plant Immune System. Journal of Proteome Research, 2021, 20, 3664-3677.	3.7	6
5	Blistering1 Modulates Penicillium expansum Virulence Via Vesicle-mediated Protein Secretion. Molecular and Cellular Proteomics, 2020, 19, 344-361.	3.8	22
6	The Proteomics of Resistance to Halo Blight in Common Bean. Molecular Plant-Microbe Interactions, 2020, 33, 1161-1175.	2.6	12
7	Benzothiadiazole Conditions the Bean Proteome for Immunity to Bean Rust. Molecular Plant-Microbe Interactions, 2020, 33, 600-611.	2.6	8
8	Quantitative Proteomics Reveals a Role for SERINE/ARGININE-Rich 45 in Regulating RNA Metabolism and Modulating Transcriptional Suppression via the ASAP Complex in Arabidopsis thaliana. Frontiers in Plant Science, 2019, 10, 1116.	3.6	16
9	Quantitative Proteomic Analysis of <i>Staphylococcus aureus</i> Treated With Punicalagin, a Natural Antibiotic From Pomegranate That Disrupts Iron Homeostasis and Induces SOS. Proteomics, 2018, 18, e1700461.	2.2	28
10	A Proteomic Network for Symbiotic Nitrogen Fixation Efficiency in Bradyrhizobium elkanii. Molecular Plant-Microbe Interactions, 2018, 31, 334-343.	2.6	5
11	Protection Against Common Bean Rust Conferred by a Gene-Silencing Method. Phytopathology, 2017, 107, 920-927.	2.2	23
12	Putative Rust Fungal Effector Proteins in Infected Bean and Soybean Leaves. Phytopathology, 2016, 106, 491-499.	2.2	31
13	Different Cellular Origins and Functions of Extracellular Proteins from Escherichia coli O157:H7 and O104:H4 as Determined by Comparative Proteomic Analysis. Applied and Environmental Microbiology, 2016, 82, 4371-4378.	3.1	13
14	Doubling down on phosphorylation as a variable peptide modification. Proteomics, 2016, 16, 2444-2447.	2.2	3
15	Expression of a synthetic rust fungal virus cDNA in yeast. Archives of Virology, 2016, 161, 111-123.	2.1	3
16	Proteomics of Nitrogen Remobilization in Poplar Bark. Journal of Proteome Research, 2015, 14, 1112-1126.	3.7	16
17	Phosphothreonine 218 is required for the function of SR45.1 in regulating flower petal development in <i>Arabidopsis</i> . Plant Signaling and Behavior, 2014, 9, e29134.	2.4	36
18	The haustorial transcriptomes of <i><scp>U</scp>romyces appendiculatus</i> and <i><scp>P</scp>hakopsora pachyrhizi</i> and their candidate effector families. Molecular Plant Pathology, 2014, 15, 379-393.	4.2	67

BRET COOPER

#	Article	IF	CITATIONS
19	Proof by synthesis of Tobacco mosaic virus. Genome Biology, 2014, 15, R67.	9.6	20
20	Disruption of <i>Rpp1</i> -mediated soybean rust immunity by virus-induced gene silencing. Plant Signaling and Behavior, 2013, 8, e27543.	2.4	20
21	Separation anxiety. Plant Signaling and Behavior, 2013, 8, e24721.	2.4	6
22	CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19486-19491.	7.1	539
23	Proteomic Pleiotropy of <i>OpgGH</i> , an Operon Necessary for Efficient Growth of <i>Salmonella enterica</i> serovar Typhimurium under Low-Osmotic Conditions. Journal of Proteome Research, 2012, 11, 1720-1727.	3.7	11
24	The Problem with Peptide Presumption and the Downfall of Target–Decoy False Discovery Rates. Analytical Chemistry, 2012, 84, 9663-9667.	6.5	13
25	Nuclear proteomic changes linked to soybean rust resistance. Molecular BioSystems, 2011, 7, 773-783.	2.9	39
26	Proteomic responses in Arabidopsis thaliana seedlings treated with ethylene. Molecular BioSystems, 2011, 7, 2637.	2.9	71
27	The Problem with Peptide Presumption and Low Mascot Scoring. Journal of Proteome Research, 2011, 10, 1432-1435.	3.7	32
28	A Parallelized Binary Search Tree. Journal of Information Technology & Software Engineering, 2011, 01,	0.3	2
29	Affinity Purification and Mass Spectrometry: An Attractive Choice to Investigate Protein-Protein Interactions in Plant Immunity. Current Proteomics, 2010, 7, 258-264.	0.3	11
30	Relative, label-free protein quantitation: Spectral counting error statistics from nine replicate MudPIT samples. Journal of the American Society for Mass Spectrometry, 2010, 21, 1534-1546.	2.8	46
31	Quantitative Proteomic Analysis of Bean Plants Infected by a Virulent and Avirulent Obligate Rust Fungus. Molecular and Cellular Proteomics, 2009, 8, 19-31.	3.8	61
32	Generation of Phaseolus vulgaris ESTs and investigation of their regulation upon Uromyces appendiculatus infection. BMC Plant Biology, 2009, 9, 46.	3.6	34
33	Establishment of a Protein Reference Map for Soybean Root Hair Cells Â. Plant Physiology, 2009, 149, 670-682.	4.8	95
34	Correlation of Multiple Peptide Mass Spectra for Phosphoprotein Identification. Journal of Proteome Research, 2009, 8, 5396-5405.	3.7	8
35	Coding DNA repeated throughout intergenic regions of the Arabidopsis thaliana genome: evolutionary footprints of RNA silencing. Molecular BioSystems, 2009, 5, 1679.	2.9	11
36	Combined Dynamic Arrays for Storing and Searching Semi-Ordered Tandem Mass Spectrometry Data. Journal of Computational Biology, 2008, 15, 457-468.	1.6	2

BRET COOPER

#	Article	IF	CITATIONS
37	Probability-based pattern recognition and statistical framework for randomization: modeling tandem mass spectrum/peptide sequence false match frequencies. Bioinformatics, 2007, 23, 2210-2217.	4.1	39
38	Protein Accumulation in the Germinating Uromyces appendiculatus Uredospore. Molecular Plant-Microbe Interactions, 2007, 20, 857-866.	2.6	37
39	Probability Model for Assessing Proteins Assembled from Peptide Sequences Inferred from Tandem Mass Spectrometry Data. Analytical Chemistry, 2007, 79, 3901-3911.	6.5	58
40	Shotgun proteomic analysis of <i>Arabidopsis thaliana</i> leaves. Journal of Separation Science, 2007, 30, 2225-2230.	2.5	31
41	Tandem mass spectrometry for the detection of plant pathogenic fungi and the effects of database composition on protein inferences. Proteomics, 2007, 7, 3932-3942.	2.2	22
42	Alternative workflows for plant proteomic analysis. Molecular BioSystems, 2006, 2, 621.	2.9	24
43	Shotgun identification of proteins from uredospores of the bean rustUromyces appendiculatus. Proteomics, 2006, 6, 2477-2484.	2.2	44
44	Mass spectrometry-based proteomics for the detection of plant pathogens. Proteomics, 2006, 6, 4069-4075.	2.2	27
45	Identification of rice (Oryza sativa) proteins linked to the cyclin-mediated regulation of the cell cycle. Plant Molecular Biology, 2003, 53, 273-279.	3.9	17
46	Investigative proteomics: Identification of an unknown plant virus from infected plants using mass spectrometry. Journal of the American Society for Mass Spectrometry, 2003, 14, 736-741.	2.8	79
47	Diverse RNA viruses elicit the expression of common sets of genes in susceptibleArabidopsis thalianaplants. Plant Journal, 2003, 33, 271-283.	5.7	323
48	A network of rice genes associated with stress response and seed development. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4945-4950.	7.1	228
49	A Draft Sequence of the Rice Genome (<i>Oryza sativa</i> L. ssp. <i>japonica</i>). Science, 2002, 296, 92-100.	12.6	2,866
50	Collateral gene expression changes induced by distinct plant viruses during the hypersensitive resistance reaction in Chenopodium amaranticolor. Plant Journal, 2001, 26, 339-349.	5.7	41
51	Constitutive salicylic acid-dependent signaling in cpr1 and cpr6 mutants requires PAD4. Plant Journal, 2001, 26, 395-407.	5.7	113
52	Genetic Mechanisms for Engineering Host Resistance to Plant Viruses. , 1999, , 557-574.		1
53	Domains of the TMV movement protein involved in subcellular localization. Plant Journal, 1998, 15, 15-25.	5.7	81
54	Defective Movement of Viruses in the Family Bromoviridae Is Differentially Complemented in Nicotiana benthamiana Expressing Tobamovirus or Dianthovirus Movement Proteins. Phytopathology, 1998, 88, 666-672.	2.2	26

#	Article	IF	CITATIONS
55	Cell-to-Cell Transport of Movement-Defective Cucumber Mosaic and Tobacco Mosaic Viruses in Transgenic Plants Expressing Heterologous Movement Protein Genes. Virology, 1996, 216, 208-213.	2.4	36
56	A defective movement protein of TMV in transgenic plants confers resistance to multipleviruses whereas the functional analog increases susceptibility. Virology, 1995, 206, 307-313.	2.4	150