Charlotte L Scott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9533890/publications.pdf

Version: 2024-02-01

52 papers

9,491 citations

34 h-index 50 g-index

55 all docs

55 docs citations 55 times ranked 13332 citing authors

#	Article	IF	CITATIONS
1	Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nature Immunology, 2014, 15, 929-937.	7.0	921
2	Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunology, 2013, 6, 498-510.	2.7	749
3	Unsupervised High-Dimensional Analysis Aligns Dendritic Cells across Tissues and Species. Immunity, 2016, 45, 669-684.	6.6	683
4	Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nature Communications, 2016, 7, 10321.	5 . 8	604
5	A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nature Neuroscience, 2019, 22, 1021-1035.	7.1	603
6	Yolk Sac Macrophages, Fetal Liver, and Adult Monocytes Can Colonize an Empty Niche and Develop into Functional Tissue-Resident Macrophages. Immunity, 2016, 44, 755-768.	6.6	478
7	Stellate Cells, Hepatocytes, and Endothelial Cells Imprint the Kupffer Cell Identity on Monocytes Colonizing the Liver Macrophage Niche. Immunity, 2019, 51, 638-654.e9.	6.6	384
8	Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell, 2022, 185, 379-396.e38.	13.5	343
9	Does niche competition determine the origin of tissue-resident macrophages?. Nature Reviews Immunology, 2017, 17, 451-460.	10.6	321
10	Intestinal CD103+ dendritic cells: master regulators of tolerance?. Trends in Immunology, 2011, 32, 412-419.	2.9	294
11	Macrophages and lipid metabolism. Cellular Immunology, 2018, 330, 27-42.	1.4	289
12	Osteopontin Expression Identifies a Subset of Recruited Macrophages Distinct from Kupffer Cells in the Fatty Liver. Immunity, 2020, 53, 641-657.e14.	6.6	287
13	Long-lived self-renewing bone marrow-derived macrophages displace embryo-derived cells to inhabit adult serous cavities. Nature Communications, 2016, 7, ncomms11852.	5.8	275
14	IRF8 Transcription Factor Controls Survival and Function of Terminally Differentiated Conventional and Plasmacytoid Dendritic Cells, Respectively. Immunity, 2016, 45, 626-640.	6.6	273
15	Type 2 Innate Lymphoid Cells Drive CD4+ Th2 Cell Responses. Journal of Immunology, 2014, 192, 2442-2448.	0.4	268
16	Inflammatory Type 2 cDCs Acquire Features of cDC1s and Macrophages to Orchestrate Immunity to Respiratory Virus Infection. Immunity, 2020, 52, 1039-1056.e9.	6.6	237
17	Intestinal CD103â^' dendritic cells migrate in lymph and prime effector T cells. Mucosal Immunology, 2013, 6, 104-113.	2.7	227
18	The tumour microenvironment harbours ontogenically distinct dendritic cell populations with opposing effects on tumour immunity. Nature Communications, 2016, 7, 13720.	5.8	217

#	Article	IF	CITATIONS
19	The Transcription Factor ZEB2 Is Required to Maintain the Tissue-Specific Identities of Macrophages. Immunity, 2018, 49, 312-325.e5.	6.6	172
20	Development of conventional dendritic cells: from common bone marrow progenitors to multiple subsets in peripheral tissues. Mucosal Immunology, 2017, 10, 831-844.	2.7	155
21	A20 critically controls microglia activation and inhibits inflammasome-dependent neuroinflammation. Nature Communications, 2018, 9, 2036.	5 . 8	152
22	Profiling peripheral nerve macrophages reveals two macrophage subsets with distinct localization, transcriptome and response to injury. Nature Neuroscience, 2020, 23, 676-689.	7.1	148
23	CCR2+CD103â^' intestinal dendritic cells develop from DC-committed precursors and induce interleukin-17 production by T cells. Mucosal Immunology, 2015, 8, 327-339.	2.7	140
24	Interleukin-22 binding protein (IL-22BP) is constitutively expressed by a subset of conventional dendritic cells and is strongly induced by retinoic acid. Mucosal Immunology, 2014, 7, 101-113.	2.7	130
25	The transcription factor Zeb2 regulates development of conventional and plasmacytoid DCs by repressing Id2. Journal of Experimental Medicine, 2016, 213, 897-911.	4.2	125
26	Dendritic cell subsets in the intestinal lamina propria: Ontogeny and function. European Journal of Immunology, 2013, 43, 3098-3107.	1.6	118
27	Barrier-tissue macrophages: functional adaptation to environmental challenges. Nature Medicine, 2017, 23, 1258-1270.	15.2	114
28	Myocardial Infarction Primes Autoreactive T Cells through Activation of Dendritic Cells. Cell Reports, 2017, 18, 3005-3017.	2.9	104
29	Lymph-borne CD8 \hat{l} ±+ dendritic cells are uniquely able to cross-prime CD8+ T cells with antigen acquired from intestinal epithelial cells. Mucosal Immunology, 2015, 8, 38-48.	2.7	93
30	Mononuclear phagocytes of the intestine, the skin, and the lung. Immunological Reviews, 2014, 262, 9-24.	2.8	91
31	ZEBs: Novel Players in Immune Cell Development and Function. Trends in Immunology, 2019, 40, 431-446.	2.9	86
32	Non-alcoholic steatohepatitis induces transient changes within the liver macrophage pool. Cellular Immunology, 2017, 322, 74-83.	1.4	81
33	The role of Kupffer cells in hepatic iron and lipid metabolism. Journal of Hepatology, 2018, 69, 1197-1199.	1.8	63
34	The MacBlue Binary Transgene (csf1r-gal4VP16/UAS-ECFP) Provides a Novel Marker for Visualisation of Subsets of Monocytes, Macrophages and Dendritic Cells and Responsiveness to CSF1 Administration. PLoS ONE, 2014, 9, e105429.	1.1	48
35	Macrophage Subsets in Obesity, Aligning the Liver and Adipose Tissue. Frontiers in Endocrinology, 2020, 11, 259.	1.5	32
36	OTULIN Prevents Liver Inflammation and Hepatocellular Carcinoma by Inhibiting FADD- and RIPK1 Kinase-Mediated Hepatocyte Apoptosis. Cell Reports, 2020, 30, 2237-2247.e6.	2.9	30

#	Article	IF	CITATIONS
37	Myocarditis Elicits Dendritic Cell and Monocyte Infiltration in the Heart and Self-Antigen Presentation by Conventional Type 2 Dendritic Cells. Frontiers in Immunology, 2018, 9, 2714.	2.2	28
38	Signal regulatory protein alpha (SIRPα) regulates the homeostasis of CD103 ⁺ CD11b ⁺ <scp>DC</scp> s in the intestinal lamina propria. European Journal of Immunology, 2014, 44, 3658-3668.	1.6	25
39	Transcriptional regulation of DC fate specification. Molecular Immunology, 2020, 121, 38-46.	1.0	21
40	Isolation and Identification of Intestinal Myeloid Cells. Methods in Molecular Biology, 2017, 1559, 223-239.	0.4	15
41	Hepatic Macrophage Responses in Inflammation, a Function of Plasticity, Heterogeneity or Both?. Frontiers in Immunology, 2021, 12, 690813.	2.2	15
42	A20 deficiency in myeloid cells protects mice from diet-induced obesity and insulin resistance due to increased fatty acid metabolism. Cell Reports, 2021, 36, 109748.	2.9	14
43	Isolation and Identification of Conventional Dendritic Cell Subsets from the Intestine of Mice and Men. Methods in Molecular Biology, 2016, 1423, 101-118.	0.4	10
44	Tissue Unit-ed: Lung Cells Team up to Drive Alveolar Macrophage Development. Cell, 2018, 175, 898-900.	13.5	6
45	ILC3s control splenic cDC homeostasis via lymphotoxin signaling. Journal of Experimental Medicine, 2021, 218, .	4.2	6
46	â€~NOTCHing up' the In Vitro Production of Dendritic Cells. Trends in Immunology, 2018, 39, 765-767.	2.9	5
47	In matters of the heart, (cellular) communication is key. Immunity, 2021, 54, 1906-1908.	6.6	2
48	Priority lane to cDC1 open for IRF8+ progenitors. Blood, 2019, 133, 1795-1797.	0.6	1
49	The conventional dendritic cell lineage is born. Nature Reviews Immunology, 2021, 21, 623-623.	10.6	1
50	Welcoming c-MAF to the macrophage transcription factor VAM-ily. Science Immunology, 2021, 6, eabl5793.	5.6	1
51	A breath of fresh macrophages ameliorates inflammation in the hypoxic lung. Nature Immunology, 0, , .	7.0	1
52	Conventional Dendritic Cells: Identification, Subsets, Development, andÂFunctions., 2016,, 374-383.		0