
Richard Fox

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/953373/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biology, 2006, 12, 450-455.	9.5	1,214
2	Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature, 2001, 414, 65-69.	27.8	1,096
3	Comparative Losses of British Butterflies, Birds, and Plants and the Global Extinction Crisis. Science, 2004, 303, 1879-1881.	12.6	764
4	Prioritizing multiple-use landscapes for conservation: methods for large multi-species planning problems. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1885-1891.	2.6	465
5	Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biological Conservation, 2006, 132, 279-291.	4.1	435
6	Responses of butterflies to twentieth century climate warming: implications for future ranges. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 2163-2171.	2.6	363
7	DIRECT AND INDIRECT EFFECTS OF CLIMATE AND HABITAT FACTORS ON BUTTERFLY DIVERSITY. Ecology, 2007, 88, 605-611.	3.2	356
8	Species richness declines and biotic homogenisation have slowed down for <scp>NW</scp> â€European pollinators and plants. Ecology Letters, 2013, 16, 870-878.	6.4	305
9	A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecological Monographs, 2019, 89, e01370.	5.4	290
10	Species richness changes lag behind climate change. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1465-1470.	2.6	288
11	Impacts of climate warming and habitat loss on extinctions at species' low-latitude range boundaries. Global Change Biology, 2006, 12, 1545-1553.	9.5	271
12	Extinction risk from climate change is reduced by microclimatic buffering. Nature Climate Change, 2018, 8, 713-717.	18.8	245
13	The decline of moths in Great Britain: a review of possible causes. Insect Conservation and Diversity, 2013, 6, 5-19.	3.0	224
14	Spatial patterns in species distributions reveal biodiversity change. Nature, 2004, 432, 393-396.	27.8	214
15	Pollination by nocturnal <scp>L</scp> epidoptera, and the effects of light pollution: a review. Ecological Entomology, 2015, 40, 187-198.	2.2	200
16	Protected areas facilitate species' range expansions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14063-14068.	7.1	185
17	Impacts of landscape structure on butterfly range expansion. Ecology Letters, 2001, 4, 313-321.	6.4	176
18	Longâ€ŧerm changes to the frequency of occurrence of British moths are consistent with opposing and synergistic effects of climate and landâ€use changes. Journal of Applied Ecology, 2014, 51, 949-957.	4.0	175

#	Article	IF	CITATIONS
19	Uncovering hidden spatial structure in species communities with spatially explicit joint species distribution models. Methods in Ecology and Evolution, 2016, 7, 428-436.	5.2	170
20	Is the insect apocalypse upon us? How to find out. Biological Conservation, 2020, 241, 108327.	4.1	167
21	Temperature-Dependent Alterations in Host Use Drive Rapid Range Expansion in a Butterfly. Science, 2012, 336, 1028-1030.	12.6	154
22	Multiâ€generational longâ€distance migration of insects: studying the painted lady butterfly in the Western Palaearctic. Ecography, 2013, 36, 474-486.	4.5	137
23	Assisted colonization in a changing climate: a testâ€study using two U.K. butterflies. Conservation Letters, 2009, 2, 46-52.	5.7	133
24	Long-term population trends in widespread British moths. Journal of Insect Conservation, 2004, 8, 119-136.	1.4	131
25	The dark side of street lighting: impacts on moths and evidence for the disruption of nocturnal pollen transport. Global Change Biology, 2017, 23, 697-707.	9.5	121
26	A window to the world of global insect declines: Moth biodiversity trends are complex and heterogeneous. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	111
27	Geographical range margins of many taxonomic groups continue to shift polewards. Biological Journal of the Linnean Society, 2015, 115, 586-597.	1.6	105
28	Does including physiology improve species distribution model predictions of responses to recent climate change?. Ecology, 2011, 92, 2214-2221.	3.2	97
29	Habitat availability explains variation in climate-driven range shifts across multiple taxonomic groups. Scientific Reports, 2019, 9, 15039.	3.3	85
30	Is light pollution driving moth population declines? A review of causal mechanisms across the life cycle. Insect Conservation and Diversity, 2021, 14, 167-187.	3.0	85
31	Are neonicotinoid insecticides driving declines of widespread butterflies?. PeerJ, 2015, 3, e1402.	2.0	85
32	The effects of visual apparency on bias in butterfly recording and monitoring. Biological Conservation, 2006, 128, 486-492.	4.1	83
33	Climate-induced phenology shifts linked to range expansions in species with multiple reproductive cycles per year. Nature Communications, 2019, 10, 4455.	12.8	82
34	Climate change, climatic variation and extreme biological responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160144.	4.0	72
35	Abundance changes and habitat availability drive species' responses to climate change. Nature Climate Change, 2014, 4, 127-131.	18.8	69
36	Climatic Associations of British Species Distributions Show Good Transferability in Time but Low Predictive Accuracy for Range Change. PLoS ONE, 2012, 7, e40212.	2.5	68

#	Article	IF	CITATIONS
37	Using citizen science butterfly counts to predict species population trends. Conservation Biology, 2017, 31, 1350-1361.	4.7	65
38	Insect responses to global change offer signposts for biodiversity and conservation. Ecological Entomology, 2021, 46, 699-717.	2.2	63
39	Quantifying rangeâ€wide variation in population trends from local abundance surveys and widespread opportunistic occurrence records. Methods in Ecology and Evolution, 2014, 5, 751-760.	5.2	56
40	Construction, validation, and application of nocturnal pollen transport networks in an agroâ€ecosystem: a comparison using light microscopy and DNA metabarcoding. Ecological Entomology, 2019, 44, 17-29.	2.2	55
41	The effectiveness of protected areas in the conservation of species with changing geographical ranges. Biological Journal of the Linnean Society, 2015, 115, 707-717.	1.6	53
42	Street lighting has detrimental impacts on local insect populations. Science Advances, 2021, 7, .	10.3	52
43	A new Red List of British butterflies. Insect Conservation and Diversity, 2011, 4, 159-172.	3.0	49
44	Insect population trends and the IUCN Red List process. Journal of Insect Conservation, 2019, 23, 269-278.	1.4	49
45	Citizen science and invasive alien species: Predicting the detection of the oak processionary moth Thaumetopoea processionea by moth recorders. Biological Conservation, 2017, 208, 146-154.	4.1	47
46	Effects of street lighting technologies on the success and quality of pollination in a nocturnally pollinated plant. Ecosphere, 2019, 10, e02550.	2.2	43
47	Moths count: recording moths for conservation in the UK. Journal of Insect Conservation, 2011, 15, 55-68.	1.4	42
48	Temporal variation in responses of species to four decades of climate warming. Global Change Biology, 2012, 18, 2439-2447.	9.5	42
49	Dynamic distribution modelling: predicting the present from the past. Ecography, 2009, 32, 5-12.	4.5	41
50	Annual estimates of occupancy for bryophytes, lichens and invertebrates in the UK, 1970–2015. Scientific Data, 2019, 6, 259.	5.3	39
51	A national-scale assessment of climate change impacts on species: Assessing the balance of risks and opportunities for multiple taxa. Biological Conservation, 2017, 213, 124-134.	4.1	35
52	Surrogacy and persistence in reserve selection: landscape prioritization for multiple taxa in Britain. Journal of Applied Ecology, 2009, 46, 82-91.	4.0	33
53	Data-derived metrics describing the behaviour of field-based citizen scientists provide insights for project design and modelling bias. Scientific Reports, 2020, 10, 11009.	3.3	31
54	Long-term population trends in widespread British moths. Journal of Insect Conservation, 2004, 8, 119-136.	1.4	29

#	Article	IF	CITATIONS
55	High Abundances of Species in Protected Areas in Parts of their Geographic Distributions Colonized during a Recent Period of Climatic Change. Conservation Letters, 2015, 8, 97-106.	5.7	26
56	Bucking the trend: the diversity of Anthropocene â€~winners' among British moths. Frontiers of Biogeography, 2019, 11, .	1.8	23
57	Efficient occupancy model-fitting for extensive citizen-science data. PLoS ONE, 2017, 12, e0174433.	2.5	22
58	Microclimate affects landscape level persistence in the British Lepidoptera. Journal of Insect Conservation, 2015, 19, 237-253.	1.4	21
59	Individualistic sensitivities and exposure to climate change explain variation in species' distribution and abundance changes. Science Advances, 2015, 1, e1400220.	10.3	21
60	A revised Red List of British butterflies. Insect Conservation and Diversity, 2022, 15, 485-495.	3.0	20
61	The utility of distribution data in predicting phenology. Methods in Ecology and Evolution, 2013, 4, 1024-1032.	5.2	19
62	A new procedure for extrapolating turnover regionalization at midâ€small spatial scales, tested on <scp>B</scp> ritish butterflies. Methods in Ecology and Evolution, 2015, 6, 1287-1297.	5.2	19
63	British butterfly distributions and the 2010 target. Journal of Insect Conservation, 2011, 15, 291-299.	1.4	16
64	Wildfire alters the structure and seasonal dynamics of nocturnal pollenâ€ŧransport networks. Functional Ecology, 2019, 33, 1882-1892.	3.6	16
65	Assessing species' habitat associations from occurrence records, standardised monitoring data and expert opinion: A test with British butterflies. Ecological Indicators, 2016, 62, 271-278.	6.3	12
66	Developing a biodiversityâ€based indicator for largeâ€scale environmental assessment: a case study of proposed shale gas extraction sites in Britain. Journal of Applied Ecology, 2017, 54, 872-882.	4.0	12
67	Government targets for protected area management: will threatened butterflies benefit?. Biodiversity and Conservation, 2007, 16, 3719-3736.	2.6	11
68	Opinions of citizen scientists on open access to UK butterfly and moth occurrence data. Biodiversity and Conservation, 2019, 28, 3321-3341.	2.6	11
69	How complete are insect inventories? An assessment of the british butterfly database highlighting the influence of dynamic distribution shifts on sampling completeness. Biodiversity and Conservation, 2021, 30, 889-902.	2.6	10
70	Population variability in species can be deduced from opportunistic citizen science records: a case study using British butterflies. Insect Conservation and Diversity, 2018, 11, 131-142.	3.0	9
71	Traits data for the butterflies and macroâ€moths of Great Britain and Ireland. Ecology, 2022, 103, e3670.	3.2	7
72	Functional data analysis of multi-species abundance and occupancy data sets. Ecological Indicators, 2019, 104, 156-165.	6.3	6

#	Article	lF	CITATIONS
73	Species traits influence the process of biodiversity inventorying: a case study using the British butterfly database. Insect Conservation and Diversity, 2021, 14, 748-755.	3.0	5
74	Moths. , 2010, , 448-470.		4
75	British butterfly distributions and the 2010 target. , 2010, , 5-13.		Ο
76	Moths count: recording moths for conservation in the UK. , 2010, , 29-42.		0