List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9532884/publications.pdf Version: 2024-02-01

ΙΕΡΖΥ ΠΑΙΚΑ

#	Article	IF	CITATIONS
1	Surgical treatment of benign lesions and pathologic fractures of the proximal femur in children. Archives of Orthopaedic and Trauma Surgery, 2022, 142, 615-624.	1.3	13
2	Histories of Neutrino Oscillation of Consistency Induced by the Presence of Normal Matter. Universe, 2022, 8, 106.	0.9	0
3	Supracondylar Fractures of the Humerus: Association of Neurovascular Lesions with Degree of Fracture Displacement in Children—A Retrospective Study. Children, 2022, 9, 308.	0.6	1
4	Faint trace of a particle in a noisy Vaidman three-path interferometer. Scientific Reports, 2021, 11, 1123.	1.6	5
5	Geometric speed limit of neutrino oscillation. Quantum Information Processing, 2021, 20, 1.	1.0	3
6	Currents in a Quantum Nanoring Controlled by Non-Classical Electromagnetic Field. Entropy, 2021, 23, 652.	1.1	1
7	Statistical image analysis and escort histograms in characterization of articular cartilage repair in a skeleton animal model. PLoS ONE, 2021, 16, e0252505.	1.1	0
8	Neutrino Oscillations in the Presence of Matter and Continuous Non-Selective Measurement. Symmetry, 2020, 12, 1296.	1.1	1
9	Binary Communication with Gazeau–Klauder Coherent States. Entropy, 2020, 22, 201.	1.1	4
10	Scattering–Like Control of the Cheshire Cat Effect in Open Quantum Systems. Quantum Reports, 2020, 2, 1-11.	0.6	4
11	Multi-partite entanglement in Davies environment. European Physical Journal: Special Topics, 2019, 227, 2037-2041.	1.2	1
12	Quantum contextuality of a single neutrino under interactions with matter. New Journal of Physics, 2018, 20, 063040.	1.2	10
13	The Quantum Cheshire Cat Effect in the Presence of Decoherence. Advances in Mathematical Physics, 2018, 2018, 1-8.	0.4	5
14	Self-averaging of random quantum dynamics. Physical Review A, 2018, 98, .	1.0	4
15	Distinguishing quantum states using time-traveling qubits in the presence of thermal environments. Physical Review A, 2017, 95, .	1.0	0
16	Leggett-GargK3quantity discriminates between Dirac and Majorana neutrinos. Physical Review D, 2017, 96, .	1.6	14
17	Leggett–Garg inequalities violation via the Fermi contact hyperfine interaction. Fortschritte Der Physik, 2017, 65, 1600041.	1.5	0
18	Leggett–Garg inequalities for a quantum top affected by classical noise. Quantum Information Processing, 2016, 15, 4911-4925.	1.0	2

#	Article	IF	CITATIONS
19	Quantum cloning disturbed by thermal Davies environment. Quantum Information Processing, 2016, 15, 2661-2673.	1.0	2
20	Reversal of relaxation due to a dephasing environment. Physical Review A, 2015, 91, .	1.0	3
21	Violation of Leggett—Garg inequalities for quantum-classical hybrids. Journal of Physics: Conference Series, 2015, 626, 012038.	0.3	1
22	Payoffs and Coherence of a Quantum Two-Player Game in a Thermal Environment. Entropy, 2015, 17, 7736-7751.	1.1	5
23	Energetics of an rf SQUID Coupled to Two Thermal Reservoirs. PLoS ONE, 2015, 10, e0143912.	1.1	1
24	Reply to Comment on â€~Gazeau–Klauder cat states'. Journal of Physics A: Mathematical and Theoretical, 2015, 48, 238002.	0.7	0
25	Interference of qubits in pure dephasing and almost pure dephasing environments. Journal of Physics A: Mathematical and Theoretical, 2015, 48, 275302.	0.7	4
26	Leggett-Garg inequality for qubits coupled to thermal environment. Physical Review A, 2015, 91, .	1.0	14
27	Temperature-independent teleportation of qubits in Davies environments. Quantum Information Processing, 2015, 14, 135-145.	1.0	9
28	Quantum Two Player Game in Thermal Environment. PLoS ONE, 2015, 10, e0134916.	1.1	10
29	Reply to Comment on â€~Initial states of qubit–environment models leading to conserved quantities'. Journal of Physics A: Mathematical and Theoretical, 2014, 47, 168002.	0.7	0
30	Disentanglement of Qubits in Classical Limit of Interaction. International Journal of Theoretical Physics, 2014, 53, 870-880.	0.5	5
31	Reply to "Comment on: â€ [~] Multi-photon Rabi model: Generalized parity and its applications' [Phys. Lett. A 377 (2013) 3205]―[Phys. Lett. A 378 (2014) 1969]. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 1970.	0.9	1
32	Multi-photon Rabi model: Generalized parity and its applications. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 3205-3208.	0.9	7
33	Relation Between Purity of an Open Qubit Dynamics and Its Initial Correlation with an Environment. International Journal of Theoretical Physics, 2013, 52, 1148-1159.	0.5	5
34	Initial states of qubit–environment models leading to conserved quantities. Journal of Physics A: Mathematical and Theoretical, 2013, 46, 235301.	0.7	1
35	New symmetry in the Rabi model. Journal of Physics A: Mathematical and Theoretical, 2013, 46, 265302.	0.7	9
36	Gazeau–Klauder cat states. Journal of Physics A: Mathematical and Theoretical, 2012, 45, 244006.	0.7	4

#	Article	IF	CITATIONS
37	Negativity and quantum discord in Davies environments. Journal of Physics A: Mathematical and Theoretical, 2012, 45, 485306.	0.7	17
38	Squeezing of magnetic flux in nanorings. Journal of Physics Condensed Matter, 2012, 24, 495701.	0.7	0
39	The Trace Distance and Linear Entropy of Qubit States: The Role of Initial Qubit-Environment Correlations. Reports on Mathematical Physics, 2012, 70, 193-204.	0.4	4
40	Geometric phase as a determinant of a qubit– environment coupling. Quantum Information Processing, 2011, 10, 85-96.	1.0	23
41	Distance between quantum states in the presence of initial qubit-environment correlations: A comparative study. Physical Review A, 2011, 84, .	1.0	71
42	Dephasing of qubits by the SchrĶdinger cat. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 374-377.	1.3	14
43	Current in Hubbard rings manipulated via magnetic flux. Journal of Physics Condensed Matter, 2010, 22, 245301.	0.7	4
44	Magnetic flux in a mesoscopic SQUID controlled by nonclassical electromagnetic fields. Physical Review B, 2009, 80, .	1.1	4
45	Entanglement of qubits via a nonlinear resonator. Journal of Physics Condensed Matter, 2009, 21, 235602.	0.7	8
46	Analytically solvable model for the entanglement via scattering-like mechanisms. Quantum Information Processing, 2009, 8, 461-475.	1.0	1
47	Entanglement swapping in presence of dephasing. Physica Status Solidi (B): Basic Research, 2009, 246, 936-940.	0.7	2
48	Preface: Phys. Status Solidi B 246/5. Physica Status Solidi (B): Basic Research, 2009, 246, 929-929.	0.7	1
49	Transmission of magnetic signals in noisy mesorings. Journal of Statistical Mechanics: Theory and Experiment, 2009, 2009, P01030.	0.9	2
50	Origination and survival of qudit-qudit entanglement in open systems. Physical Review A, 2008, 77, .	1.0	30
51	Entanglement of distant flux qubits mediated by non-classical electromagnetic field. Journal of Physics Condensed Matter, 2008, 20, 275219.	0.7	8
52	Bifurcations of the geometric phase of a qubit asymmetrically coupled to the environment. Journal of Physics A: Mathematical and Theoretical, 2008, 41, 442001.	0.7	12
53	Entanglement persistence in contact with the environment: exact results. Journal of Physics A: Mathematical and Theoretical, 2007, 40, F879-F886.	0.7	19
54	Decoherence in flux qubits on mesoscopic nonsuperconducting rings. Physica Status Solidi (B): Basic Research, 2007, 244, 2470-2475.	0.7	1

#	Article	IF	CITATIONS
55	Flux-biased mesoscopic rings. Physica Status Solidi (B): Basic Research, 2007, 244, 2432-2436.	0.7	1
56	Preface: phys. stat. sol. (b) 244/7. Physica Status Solidi (B): Basic Research, 2007, 244, 2297-2297.	0.7	0
57	The influence of entangled photons on distant persistent currents. Journal of Physics Condensed Matter, 2006, 18, 1367-1379.	0.7	5
58	Collective behavior of coupled mesoscopic cylinders. Physica Status Solidi (B): Basic Research, 2005, 242, 196-202.	0.7	5
59	The influence of non-classical electromagnetic fields on persistent currents. Physica Status Solidi (B): Basic Research, 2005, 242, 296-302.	0.7	3
60	Algebraization of Spectral Problems in the Bargmann—Fock Representation. International Journal of Theoretical Physics, 2003, 42, 1059-1064.	0.5	0
61	Holonomy in Quaternionic Quantum Mechanics. International Journal of Theoretical Physics, 2003, 42, 1053-1057.	0.5	0