Chi-Sun Poon

List of Publications by Citations

Source: https://exaly.com/author-pdf/9532845/chi-sun-poon-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

87 448 27,437 144 h-index g-index citations papers 460 33,323 7.9 7.99 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
448	Heavy metal contamination of urban soils and street dusts in Hong Kong. <i>Applied Geochemistry</i> , 2001 , 16, 1361-1368	3.5	754
447	Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates. <i>Construction and Building Materials</i> , 2004 , 18, 461-468	6.7	575
446	Photocatalytic construction and building materials: From fundamentals to applications. <i>Building and Environment</i> , 2009 , 44, 1899-1906	6.5	521
445	Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete. <i>Cement and Concrete Research</i> , 2004 , 34, 31-36	10.3	479
444	Degree of hydration and gel/space ratio of high-volume fly ash/cement systems. <i>Cement and Concrete Research</i> , 2000 , 30, 747-756	10.3	420
443	Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete. <i>Construction and Building Materials</i> , 2006 , 20, 858-865	6.7	376
442	Feasible use of recycled concrete aggregates and crushed clay brick as unbound road sub-base. <i>Construction and Building Materials</i> , 2006 , 20, 578-585	6.7	374
441	Enhancing the durability properties of concrete prepared with coarse recycled aggregate. <i>Construction and Building Materials</i> , 2012 , 35, 69-76	6.7	323
440	Quantifying the waste reduction potential of using prefabrication in building construction in Hong Kong. <i>Waste Management</i> , 2009 , 29, 309-20	8.6	323
439	Comparisons of natural and recycled aggregate concretes prepared with the addition of different mineral admixtures. <i>Cement and Concrete Composites</i> , 2011 , 33, 788-795	8.6	314
438	Properties of self-compacting concrete prepared with coarse and fine recycled concrete aggregates. <i>Cement and Concrete Composites</i> , 2009 , 31, 622-627	8.6	296
437	Comparison of the strength and durability performance of normal- and high-strength pozzolanic concretes at elevated temperatures. <i>Cement and Concrete Research</i> , 2001 , 31, 1291-1300	10.3	289
436	Influence of Fly Ash as Cement Replacement on the Properties of Recycled Aggregate Concrete. <i>Journal of Materials in Civil Engineering</i> , 2007 , 19, 709-717	3	280
435	Hydration and properties of nano-TiO2 blended cement composites. <i>Cement and Concrete Composites</i> , 2012 , 34, 642-649	8.6	278
434	Long-term mechanical and durability properties of recycled aggregate concrete prepared with the incorporation of fly ash. <i>Cement and Concrete Composites</i> , 2013 , 37, 12-19	8.6	263
433	Heavy metal speciation and leaching behaviors in cement based solidified/stabilized waste materials. <i>Journal of Hazardous Materials</i> , 2001 , 82, 215-30	12.8	262
432	Use of recycled aggregates in molded concrete bricks and blocks. <i>Construction and Building Materials</i> , 2002 , 16, 281-289	6.7	261

(2007-2000)

431	A study on high strength concrete prepared with large volumes of low calcium fly ash. <i>Cement and Concrete Research</i> , 2000 , 30, 447-455	10.3	257
430	Properties of recycled aggregate concrete made with recycled aggregates with different amounts of old adhered mortars. <i>Materials & Design</i> , 2014 , 58, 19-29		255
429	Rate of pozzolanic reaction of metakaolin in high-performance cement pastes. <i>Cement and Concrete Research</i> , 2001 , 31, 1301-1306	10.3	253
428	Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures. <i>Cement and Concrete Research</i> , 2004 , 34, 2215-2222	10.3	252
427	On-site sorting of construction and demolition waste in Hong Kong. <i>Resources, Conservation and Recycling</i> , 2001 , 32, 157-172	11.9	250
426	Properties of concrete prepared with PVA-impregnated recycled concrete aggregates. <i>Cement and Concrete Composites</i> , 2010 , 32, 649-654	8.6	239
425	Use of phase change materials for thermal energy storage in concrete: An overview. <i>Construction and Building Materials</i> , 2013 , 46, 55-62	6.7	233
424	Assessment of mechanical properties of concrete incorporating carbonated recycled concrete aggregates. <i>Cement and Concrete Composites</i> , 2016 , 65, 67-74	8.6	220
423	Sustainable construction aspects of using prefabrication in dense urban environment: a Hong Kong case study. <i>Construction Management and Economics</i> , 2008 , 26, 953-966	3	211
422	Comparative environmental evaluation of aggregate production from recycled waste materials and virgin sources by LCA. <i>Resources, Conservation and Recycling</i> , 2016 , 109, 67-77	11.9	204
421	Prediction of compressive strength of recycled aggregate concrete using artificial neural networks. <i>Construction and Building Materials</i> , 2013 , 40, 1200-1206	6.7	197
420	Influence of recycled aggregates on long term mechanical properties and pore size distribution of concrete. <i>Cement and Concrete Composites</i> , 2011 , 33, 286-291	8.6	197
419	Properties of lightweight aggregate concrete prepared with PVC granules derived from scraped PVC pipes. <i>Waste Management</i> , 2009 , 29, 621-8	8.6	197
418	Paving blocks made with recycled concrete aggregate and crushed clay brick. <i>Construction and Building Materials</i> , 2006 , 20, 569-577	6.7	196
417	Influence of silane-based water repellent on the durability properties of recycled aggregate concrete. <i>Cement and Concrete Composites</i> , 2013 , 35, 32-38	8.6	194
416	Use of a CO2 curing step to improve the properties of concrete prepared with recycled aggregates. <i>Cement and Concrete Composites</i> , 2014 , 45, 22-28	8.6	187
415	Properties of self-compacting concrete prepared with recycled glass aggregate. <i>Cement and Concrete Composites</i> , 2009 , 31, 107-113	8.6	181
414	The use of recycled aggregate in concrete in Hong Kong. <i>Resources, Conservation and Recycling</i> , 2007 , 50, 293-305	11.9	177

413	Reducing building waste at construction sites in Hong Kong. <i>Construction Management and Economics</i> , 2004 , 22, 461-470	3	176
412	NO removal efficiency of photocatalytic paving blocks prepared with recycled materials. <i>Construction and Building Materials</i> , 2007 , 21, 1746-1753	6.7	175
411	Green remediation of As and Pb contaminated soil using cement-free clay-based stabilization/solidification. <i>Environment International</i> , 2019 , 126, 336-345	12.9	175
410	Properties of concrete prepared with crushed fine stone, furnace bottom ash and fine recycled aggregate as fine aggregates. <i>Construction and Building Materials</i> , 2009 , 23, 2877-2886	6.7	169
409	Effect of the quality of parent concrete on the properties of high performance recycled aggregate concrete. <i>Construction and Building Materials</i> , 2015 , 77, 501-508	6.7	160
408	Performance Enhancement of Recycled Concrete Aggregates through Carbonation. <i>Journal of Materials in Civil Engineering</i> , 2015 , 27, 04015029	3	157
407	Compressive behaviour of recycled aggregate concrete under impact loading. <i>Cement and Concrete Research</i> , 2015 , 71, 46-55	10.3	155
406	Performance of metakaolin concrete at elevated temperatures. <i>Cement and Concrete Composites</i> , 2003 , 25, 83-89	8.6	154
405	Experimental study on CO2 curing for enhancement of recycled aggregate properties. <i>Construction and Building Materials</i> , 2014 , 67, 3-7	6.7	153
404	Durability of recycled aggregate concrete prepared with carbonated recycled concrete aggregates. <i>Cement and Concrete Composites</i> , 2017 , 84, 214-221	8.6	147
403	Impact of high temperature on PFA concrete. Cement and Concrete Research, 2001, 31, 1065-1073	10.3	146
402	Strength and durability recovery of fire-damaged concrete after post-fire-curing. <i>Cement and Concrete Research</i> , 2001 , 31, 1307-1318	10.3	144
401	Life cycle design and prefabrication in buildings: A review and case studies in Hong Kong. <i>Automation in Construction</i> , 2014 , 39, 195-202	9.6	142
400	Influence of fly ash as a cement addition on the hardened properties of recycled aggregate concrete. <i>Materials and Structures/Materiaux Et Constructions</i> , 2008 , 41, 1191-1201	3.4	141
399	Properties of concrete prepared with low-grade recycled aggregates. <i>Construction and Building Materials</i> , 2012 , 36, 881-889	6.7	139
398	Photocatalytic cement-based materials: Comparison of nitrogen oxides and toluene removal potentials and evaluation of self-cleaning performance. <i>Building and Environment</i> , 2011 , 46, 1827-1833	6.5	139
397	Influence of carbonated recycled concrete aggregate on properties of cement mortar. <i>Construction and Building Materials</i> , 2015 , 98, 1-7	6.7	136
396	Influence of recycled aggregate on slump and bleeding of fresh concrete. <i>Materials and Structures/Materiaux Et Constructions</i> , 2007 , 40, 981-988	3.4	136

(2010-2012)

395	Recent studies on mechanical properties of recycled aggregate concrete in China review. <i>Science China Technological Sciences</i> , 2012 , 55, 1463-1480	3.5	129
394	Low-carbon and low-alkalinity stabilization/solidification of high-Pb contaminated soil. <i>Chemical Engineering Journal</i> , 2018 , 351, 418-427	14.7	128
393	Activation of fly ash/cement systems using calcium sulfate anhydrite (CaSO4). <i>Cement and Concrete Research</i> , 2001 , 31, 873-881	10.3	127
392	Utilization of recycled glass derived from cathode ray tube glass as fine aggregate in cement mortar. <i>Journal of Hazardous Materials</i> , 2011 , 192, 451-6	12.8	125
391	Effects of crushed glass cullet sizes, casting methods and pozzolanic materials on ASR of concrete blocks. <i>Construction and Building Materials</i> , 2011 , 25, 2611-2618	6.7	125
390	Aluminium-biochar composites as sustainable heterogeneous catalysts for glucose isomerisation in a biorefinery. <i>Green Chemistry</i> , 2019 , 21, 1267-1281	10	124
389	Management of construction waste in public housing projects in Hong Kong. <i>Construction Management and Economics</i> , 2004 , 22, 675-689	3	119
388	Sustainable food waste management towards circular bioeconomy: Policy review, limitations and opportunities. <i>Bioresource Technology</i> , 2020 , 297, 122497	11	117
387	CO2 curing for improving the properties of concrete blocks containing recycled aggregates. <i>Cement and Concrete Composites</i> , 2013 , 42, 1-8	8.6	116
386	A comparative study on the feasible use of recycled beverage and CRT funnel glass as fine aggregate in cement mortar. <i>Journal of Cleaner Production</i> , 2012 , 29-30, 46-52	10.3	113
385	Photocatalytic activity of titanium dioxide modified concrete materials - influence of utilizing recycled glass cullets as aggregates. <i>Journal of Environmental Management</i> , 2009 , 90, 3436-42	7.9	112
384	Properties of architectural mortar prepared with recycled glass with different particle sizes. <i>Materials & Design</i> , 2011 , 32, 2675-2684		112
383	Effects of nano-particles on failure process and microstructural properties of recycled aggregate concrete. <i>Construction and Building Materials</i> , 2017 , 142, 42-50	6.7	110
382	Influence of lead on stabilization/solidification by ordinary Portland cement and magnesium phosphate cement. <i>Chemosphere</i> , 2018 , 190, 90-96	8.4	110
381	The cause and influence of self-cementing properties of fine recycled concrete aggregates on the properties of unbound sub-base. <i>Waste Management</i> , 2006 , 26, 1166-72	8.6	110
380	Novel synergy of Si-rich minerals and reactive MgO for stabilisation/solidification of contaminated sediment. <i>Journal of Hazardous Materials</i> , 2019 , 365, 695-706	12.8	110
379	Use of recycled CRT funnel glass as fine aggregate in dry-mixed concrete paving blocks. <i>Journal of Cleaner Production</i> , 2014 , 68, 209-215	10.3	109
378	Design issues of using prefabrication in Hong Kong building construction. <i>Construction Management and Economics</i> , 2010 , 28, 1025-1042	3	105

377	Photocatalytic cementitious materials: influence of the microstructure of cement paste on photocatalytic pollution degradation. <i>Environmental Science & Environmental Science</i>	10.3	105
376	Comparative LCA on using waste materials in the cement industry: A Hong Kong case study. <i>Resources, Conservation and Recycling</i> , 2017 , 120, 199-208	11.9	102
375	Sustainable stabilization/solidification of municipal solid waste incinerator fly ash by incorporation of green materials. <i>Journal of Cleaner Production</i> , 2019 , 222, 335-343	10.3	102
374	The roles of biochar as green admixture for sediment-based construction products. <i>Cement and Concrete Composites</i> , 2019 , 104, 103348	8.6	101
373	Utilization of red mud derived from bauxite in self-compacting concrete. <i>Journal of Cleaner Production</i> , 2016 , 112, 384-391	10.3	101
372	Statistical analysis of recycled aggregates derived from different sources for sub-base applications. <i>Construction and Building Materials</i> , 2012 , 28, 129-138	6.7	101
371	Catalytic valorization of starch-rich food waste into hydroxymethylfurfural (HMF): Controlling relative kinetics for high productivity. <i>Bioresource Technology</i> , 2017 , 237, 222-230	11	99
370	Production of 5-hydroxymethylfurfural from starch-rich food waste catalyzed by sulfonated biochar. <i>Bioresource Technology</i> , 2018 , 252, 76-82	11	99
369	Feasibility of using recycled glass in architectural cement mortars. <i>Cement and Concrete Composites</i> , 2011 , 33, 848-854	8.6	99
368	Experimental study of micro/macro crack development and stressEtrain relations of cement-based composite materials at elevated temperatures. <i>Cement and Concrete Research</i> , 2004 , 34, 789-797	10.3	99
367	Using artificial neural networks for predicting the elastic modulus of recycled aggregate concrete. <i>Construction and Building Materials</i> , 2013 , 44, 524-532	6.7	98
366	Management and recycling of waste glass in concrete products: Current situations in Hong Kong. <i>Resources, Conservation and Recycling</i> , 2013 , 70, 25-31	11.9	97
365	Enhancing the performance of pre-cast concrete blocks by incorporating waste glass IASR consideration. <i>Cement and Concrete Composites</i> , 2007 , 29, 616-625	8.6	97
364	Biochar as green additives in cement-based composites with carbon dioxide curing. <i>Journal of Cleaner Production</i> , 2020 , 258, 120678	10.3	93
363	Effects of contaminants on the properties of concrete paving blocks prepared with recycled concrete aggregates. <i>Construction and Building Materials</i> , 2007 , 21, 164-175	6.7	93
362	Influence of PFA on cracking of concrete and cement paste after exposure to high temperatures. <i>Cement and Concrete Research</i> , 2003 , 33, 2009-2016	10.3	89
361	Arsenic-containing soil from geogenic source in Hong Kong: Leaching characteristics and stabilization/solidification. <i>Chemosphere</i> , 2017 , 182, 31-39	8.4	87
360	Properties of concrete blocks prepared with low grade recycled aggregates. <i>Waste Management</i> , 2009 , 29, 2369-77	8.6	87

(2008-2008)

359	Mechanical properties of 5-year-old concrete prepared with recycled aggregates obtained from three different sources. <i>Magazine of Concrete Research</i> , 2008 , 60, 57-64	2	87
358	Use of waste glass in alkali activated cement mortar. <i>Construction and Building Materials</i> , 2018 , 160, 399	- 4 . 9 7	87
357	Green remediation and recycling of contaminated sediment by waste-incorporated stabilization/solidification. <i>Chemosphere</i> , 2015 , 122, 257-264	8.4	85
356	Comparing carbon emissions of precast and cast-in-situ construction methods IA case study of high-rise private building. <i>Construction and Building Materials</i> , 2015 , 99, 39-53	6.7	83
355	Heat of hydration of Portland high-calcium fly ash cement incorporating limestone powder: Effect of limestone particle size. <i>Construction and Building Materials</i> , 2014 , 66, 410-417	6.7	82
354	Residue strength, water absorption and pore size distributions of recycled aggregate concrete after exposure to elevated temperatures. <i>Cement and Concrete Composites</i> , 2014 , 53, 73-82	8.6	81
353	Influence of recycled glass content and curing conditions on the properties of self-compacting concrete after exposure to elevated temperatures. <i>Cement and Concrete Composites</i> , 2012 , 34, 265-272	8.6	81
352	Comparative studies on the effects of sewage sludge ash and fly ash on cement hydration and properties of cement mortars. <i>Construction and Building Materials</i> , 2017 , 154, 791-803	6.7	80
351	Valorization of cellulosic food waste into levulinic acid catalyzed by heterogeneous Bristed acids: Temperature and solvent effects. <i>Chemical Engineering Journal</i> , 2017 , 327, 328-335	14.7	80
350	Properties of fly ash-modified cement mortar-aggregate interfaces. <i>Cement and Concrete Research</i> , 1999 , 29, 1905-1913	10.3	80
349	Recycling contaminated wood into eco-friendly particleboard using green cement and carbon dioxide curing. <i>Journal of Cleaner Production</i> , 2016 , 137, 861-870	10.3	80
348	Impact of Construction Waste Disposal Charging Scheme on work practices at construction sites in Hong Kong. <i>Waste Management</i> , 2013 , 33, 138-46	8.6	79
347	Designing out waste in high-rise residential buildings: Analysis of precasting methods and traditional construction. <i>Renewable Energy</i> , 2009 , 34, 2067-2073	8.1	79
346	Valorization of food waste into hydroxymethylfurfural: Dual role of metal ions in successive conversion steps. <i>Bioresource Technology</i> , 2016 , 219, 338-347	11	79
345	Utilizing recycled cathode ray tube funnel glass sand as river sand replacement in the high-density concrete. <i>Journal of Cleaner Production</i> , 2013 , 51, 184-190	10.3	78
344	Effect of carbonated recycled coarse aggregate on the dynamic compressive behavior of recycled aggregate concrete. <i>Construction and Building Materials</i> , 2017 , 151, 52-62	6.7	78
343	Feasible use of recycled CRT funnel glass as heavyweight fine aggregate in barite concrete. <i>Journal of Cleaner Production</i> , 2012 , 33, 42-49	10.3	78
342	The effect of aggregate-to-cement ratio and types of aggregates on the properties of pre-cast concrete blocks. <i>Cement and Concrete Composites</i> , 2008 , 30, 283-289	8.6	78

341	Effect of pulverized fuel ash and CO 2 curing on the water resistance of magnesium oxychloride cement (MOC). <i>Cement and Concrete Research</i> , 2017 , 97, 115-122	10.3	77
340	Fate of arsenic before and after chemical-enhanced washing of an arsenic-containing soil in Hong Kong. <i>Science of the Total Environment</i> , 2017 , 599-600, 679-688	10.2	77
339	Effect of curing parameters on CO2 curing of concrete blocks containing recycled aggregates. <i>Cement and Concrete Composites</i> , 2016 , 71, 122-130	8.6	76
338	Use of Furnace Bottom Ash for producing lightweight aggregate concrete with thermal insulation properties. <i>Journal of Cleaner Production</i> , 2015 , 99, 94-100	10.3	74
337	Value-added recycling of construction waste wood into noise and thermal insulating cement-bonded particleboards. <i>Construction and Building Materials</i> , 2016 , 125, 316-325	6.7	74
336	Influence of steam curing on the pore structures and mechanical properties of fly-ash high performance concrete prepared with recycled aggregates. <i>Cement and Concrete Composites</i> , 2016 , 71, 77-84	8.6	73
335	Extended theory of planned behaviour for promoting construction waste recycling in Hong Kong. <i>Waste Management</i> , 2019 , 83, 161-170	8.6	73
334	Evaluation of environmental impact distribution methods for supplementary cementitious materials. <i>Renewable and Sustainable Energy Reviews</i> , 2018 , 82, 597-608	16.2	72
333	Self-cleaning ability of titanium dioxide clear paint coated architectural mortar and its potential in field application. <i>Journal of Cleaner Production</i> , 2016 , 112, 3583-3588	10.3	72
332	Phosphoric acid-activated wood biochar for catalytic conversion of starch-rich food waste into glucose and 5-hydroxymethylfurfural. <i>Bioresource Technology</i> , 2018 , 267, 242-248	11	72
331	Management and sustainable utilization of processing wastes from ready-mixed concrete plants in construction: A review. <i>Resources, Conservation and Recycling</i> , 2018 , 136, 238-247	11.9	72
330	Effects of recycled fine glass aggregates on the properties of drythixed concrete blocks. <i>Construction and Building Materials</i> , 2013 , 38, 638-643	6.7	72
329	Green remediation of contaminated sediment by stabilization/solidification with industrial by-products and CO utilization. <i>Science of the Total Environment</i> , 2018 , 631-632, 1321-1327	10.2	71
328	Nano-TiO2-based architectural mortar for NO removal and bacteria inactivation: Influence of coating and weathering conditions. <i>Cement and Concrete Composites</i> , 2013 , 36, 101-108	8.6	71
327	Sustainable design of pervious concrete using waste glass and recycled concrete aggregate. Journal of Cleaner Production, 2019 , 234, 1102-1112	10.3	70
326	Materials characteristics affecting CO2 curing of concrete blocks containing recycled aggregates. <i>Cement and Concrete Composites</i> , 2016 , 67, 50-59	8.6	69
325	Recycling dredged sediment into fill materials, partition blocks, and paving blocks: Technical and economic assessment. <i>Journal of Cleaner Production</i> , 2018 , 199, 69-76	10.3	67
324	Propylene carbonate and Evalerolactone as green solvents enhance Sn(IV)-catalysed hydroxymethylfurfural (HMF) production from bread waste. <i>Green Chemistry</i> , 2018 , 20, 2064-2074	10	66

(2003-2018)

323	Combined use of sewage sludge ash and recycled glass cullet for the production of concrete blocks. Journal of Cleaner Production, 2018 , 171, 1447-1459	10.3	66	
322	Characterization of concrete properties from dielectric properties using ground penetrating radar. <i>Cement and Concrete Research</i> , 2009 , 39, 687-695	10.3	66	
321	Effect of further water curing on compressive strength and microstructure of CO2-cured concrete. <i>Cement and Concrete Composites</i> , 2016 , 72, 80-88	8.6	65	
320	Effects of limestone powder on CaCO3 precipitation in CO2 cured cement pastes. <i>Cement and Concrete Composites</i> , 2016 , 72, 9-16	8.6	65	
319	Accelerated carbonation of reactive MgO and Portland cement blends under flowing CO2 gas. <i>Cement and Concrete Composites</i> , 2020 , 106, 103489	8.6	65	
318	Mixture design and treatment methods for recycling contaminated sediment. <i>Journal of Hazardous Materials</i> , 2015 , 283, 623-32	12.8	64	
317	Research and application of pervious concrete as a sustainable pavement material: A state-of-the-art and state-of-the-practice review. <i>Construction and Building Materials</i> , 2018 , 183, 544-55	3 ^{6.7}	64	
316	Combined use of waste glass powder and cullet in architectural mortar. <i>Cement and Concrete Composites</i> , 2017 , 82, 34-44	8.6	63	
315	Sulfonated biochar as acid catalyst for sugar hydrolysis and dehydration. Catalysis Today, 2018, 314, 52-	· 65 1.3	63	
314	Development of a new generation of eco-friendly concrete blocks by accelerated mineral carbonation. <i>Journal of Cleaner Production</i> , 2016 , 133, 1235-1241	10.3	63	
313	Enhancement of recycled aggregate properties by accelerated CO2 curing coupled with limewater soaking process. <i>Cement and Concrete Composites</i> , 2018 , 89, 230-237	8.6	62	
312	Utilization of recycled cathode ray tubes glass in cement mortar for X-ray radiation-shielding applications. <i>Journal of Hazardous Materials</i> , 2012 , 199-200, 321-7	12.8	62	
311	Comparative environmental evaluation of construction waste management through different waste sorting systems in Hong Kong. <i>Waste Management</i> , 2017 , 69, 325-335	8.6	62	
310	Quantifying the Impact of Construction Waste Charging Scheme on Construction Waste Management in Hong Kong. <i>Journal of Construction Engineering and Management - ASCE</i> , 2013 , 139, 466	5-4 17 9	62	
309	Thermal induced stress and associated cracking in cement-based composite at elevated temperatures Part I: Thermal cracking around single inclusion. <i>Cement and Concrete Composites</i> , 2004 , 26, 99-111	8.6	62	
308	Phosphorus recovery and leaching of trace elements from incinerated sewage sludge ash (ISSA). <i>Chemosphere</i> , 2018 , 193, 278-287	8.4	62	
307	Innovative reuse of concrete slurry waste from ready-mixed concrete plants in construction products. <i>Journal of Hazardous Materials</i> , 2016 , 312, 65-72	12.8	61	
306	Pozzolanic properties of reject fly ash in blended cement pastes. <i>Cement and Concrete Research</i> , 2003 , 33, 1857-1865	10.3	61	

305	Inhibiting efflorescence formation on fly ashBased geopolymer via silane surface modification. <i>Cement and Concrete Composites</i> , 2018 , 94, 43-52	8.6	60
304	Carbonation treatment of recycled concrete aggregate: Effect on transport properties and steel corrosion of recycled aggregate concrete. <i>Cement and Concrete Composites</i> , 2019 , 104, 103360	8.6	60
303	Effects of particle size of treated CRT funnel glass on properties of cement mortar. <i>Materials and Structures/Materiaux Et Constructions</i> , 2013 , 46, 25-34	3.4	60
302	Comparative LCA of wood waste management strategies generated from building construction activities. <i>Journal of Cleaner Production</i> , 2018 , 177, 387-397	10.3	59
301	Carbon dioxide sequestration of concrete slurry waste and its valorisation in construction products. <i>Construction and Building Materials</i> , 2016 , 113, 664-672	6.7	59
300	Feasibility study of using recycled fresh concrete waste as coarse aggregates in concrete. <i>Construction and Building Materials</i> , 2012 , 28, 549-556	6.7	59
299	Recovery of phosphorus from incinerated sewage sludge ash by combined two-step extraction and selective precipitation. <i>Chemical Engineering Journal</i> , 2018 , 348, 74-83	14.7	58
298	Speciation, mobilization, and bioaccessibility of arsenic in geogenic soil profile from Hong Kong. <i>Environmental Pollution</i> , 2018 , 232, 375-384	9.3	58
297	Selective Glucose Isomerization to Fructose via a Nitrogen-doped Solid Base Catalyst Derived from Spent Coffee Grounds. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 16113-16120	8.3	58
296	Upcycling wood waste into fibre-reinforced magnesium phosphate cement particleboards. <i>Construction and Building Materials</i> , 2018 , 159, 54-63	6.7	57
295	Innovative solidification/stabilization of lead contaminated soil using incineration sewage sludge ash. <i>Chemosphere</i> , 2017 , 173, 143-152	8.4	56
294	Effects of Fly Ash and Silica Fume on Interfacial Porosity of Concrete. <i>Journal of Materials in Civil Engineering</i> , 1999 , 11, 197-205	3	56
293	Effects of recycled glass on properties of architectural mortar before and after exposure to elevated temperatures. <i>Journal of Cleaner Production</i> , 2015 , 101, 158-164	10.3	55
292	Photocatalytic NO removal of concrete surface layers intermixed with TiO2. <i>Building and Environment</i> , 2013 , 70, 102-109	6.5	55
291	Utilizing high volumes quarry wastes in the production of lightweight foamed concrete. <i>Construction and Building Materials</i> , 2017 , 151, 441-448	6.7	55
290	Production of lightweight concrete using incinerator bottom ash. <i>Construction and Building Materials</i> , 2008 , 22, 473-480	6.7	55
289	Comparison of glass powder and pulverized fuel ash for improving the water resistance of magnesium oxychloride cement. <i>Cement and Concrete Composites</i> , 2018 , 86, 98-109	8.6	55
288	Sustainable reclamation of phosphorus from incinerated sewage sludge ash as value-added struvite by chemical extraction, purification and crystallization. <i>Journal of Cleaner Production</i> , 2018 , 181, 717-72	25 ^{10.3}	54

287	Transforming wood waste into water-resistant magnesia-phosphate cement particleboard modified by alumina and red mud. <i>Journal of Cleaner Production</i> , 2017 , 168, 452-462	10.3	54
286	TiO2-based self-compacting glass mortar: Comparison of photocatalytic nitrogen oxide removal and bacteria inactivation. <i>Building and Environment</i> , 2012 , 53, 1-6	6.5	54
285	Thermal induced stress and associated cracking in cement-based composite at elevated temperatures P art II: thermal cracking around multiple inclusions. <i>Cement and Concrete Composites</i> , 2004 , 26, 113-126	8.6	54
284	Photocatalytic NO x degradation of concrete surface layers intermixed and spray-coated with nano-TiO 2: Influence of experimental factors. <i>Cement and Concrete Composites</i> , 2017 , 83, 279-289	8.6	53
283	Mechanism for rapid hardening of cement pastes under coupled CO2-water curing regime. <i>Cement and Concrete Composites</i> , 2019 , 97, 78-88	8.6	53
282	Rate-dependent tensile properties of ultra-high performance engineered cementitious composites (UHP-ECC). <i>Cement and Concrete Composites</i> , 2018 , 93, 218-234	8.6	52
281	Using incinerated sewage sludge ash to improve the water resistance of magnesium oxychloride cement (MOC). <i>Construction and Building Materials</i> , 2017 , 147, 519-524	6.7	51
280	Investigation into the stabilization/solidification performance of Portland cement through cement clinker phases. <i>Journal of Hazardous Materials</i> , 2007 , 139, 238-43	12.8	51
279	Indoor air quality investigation on commercial aircraft. <i>Indoor Air</i> , 1999 , 9, 180-7	5.4	51
278	An off-site snapshot methodology for estimating building construction waste composition - a case study of Hong Kong. <i>Environmental Impact Assessment Review</i> , 2019 , 77, 128-135	5.3	50
277	Using glass powder to improve the durability of architectural mortar prepared with glass aggregates. <i>Materials and Design</i> , 2017 , 135, 102-111	8.1	50
276	Polar aprotic solvent-water mixture as the medium for catalytic production of hydroxymethylfurfural (HMF) from bread waste. <i>Bioresource Technology</i> , 2017 , 245, 456-462	11	50
275	Recycling contaminated sediment into eco-friendly paving blocks by a combination of binary cement and carbon dioxide curing. <i>Journal of Cleaner Production</i> , 2017 , 164, 1279-1288	10.3	50
274	Mechanisms of metal stabilization by cement based fixation processes. <i>Science of the Total Environment</i> , 1985 , 41, 55-71	10.2	49
273	Use of Mg/Ca modified biochars to take up phosphorus from acid-extract of incinerated sewage sludge ash (ISSA) for fertilizer application. <i>Journal of Cleaner Production</i> , 2020 , 244, 118853	10.3	49
272	Effect of carbonation of modeled recycled coarse aggregate on the mechanical properties of modeled recycled aggregate concrete. <i>Cement and Concrete Composites</i> , 2018 , 89, 169-180	8.6	48
271	Valorization of lignocellulosic fibres of paper waste into levulinic acid using solid and aqueous Brfisted acid. <i>Bioresource Technology</i> , 2018 , 247, 387-394	11	48
270	Evaluation of environmental friendliness of concrete paving eco-blocks using LCA approach. <i>International Journal of Life Cycle Assessment</i> , 2016 , 21, 70-84	4.6	47

269	A novel polymer concrete made with recycled glass aggregates, fly ash and metakaolin. <i>Construction and Building Materials</i> , 2013 , 41, 146-151	6.7	47
268	Valorization of starchy, cellulosic, and sugary food waste into hydroxymethylfurfural by one-pot catalysis. <i>Chemosphere</i> , 2017 , 184, 1099-1107	8.4	47
267	Fresh properties of cement pastes or mortars incorporating waste glass powder and cullet. <i>Construction and Building Materials</i> , 2017 , 131, 793-799	6.7	46
266	Use of wastes derived from earthquakes for the production of concrete masonry partition wall blocks. <i>Waste Management</i> , 2011 , 31, 1859-66	8.6	46
265	The limitation of the toxicity characteristic leaching procedure for evaluating cement-based stabilised/solidified waste forms. <i>Waste Management</i> , 1997 , 17, 15-23	8.6	46
264	Influence of green solvent on levulinic acid production from lignocellulosic paper waste. Bioresource Technology, 2020, 298, 122544	11	46
263	The hindrance to using prefabrication in Hong Kong's building industry. <i>Journal of Cleaner Production</i> , 2018 , 204, 70-81	10.3	45
262	Minimizing demolition wastes in Hong Kong public housing projects. <i>Construction Management and Economics</i> , 2004 , 22, 799-805	3	45
261	Influences of corrosion degree and corrosion morphology on the ductility of steel reinforcement. <i>Construction and Building Materials</i> , 2017 , 148, 297-306	6.7	44
260	Study on feasibility of reutilizing textile effluent sludge for producing concrete blocks. <i>Journal of Cleaner Production</i> , 2015 , 101, 174-179	10.3	44
259	Life-cycle cost-benefit analysis on sustainable food waste management: The case of Hong Kong International Airport. <i>Journal of Cleaner Production</i> , 2018 , 187, 751-762	10.3	44
258	Compressive strength and microstructural properties of dry-mixed geopolymer pastes synthesized from GGBS and sewage sludge ash. <i>Construction and Building Materials</i> , 2018 , 182, 597-607	6.7	44
257	Characteristics and metal leachability of incinerated sewage sludge ash and air pollution control residues from Hong Kong evaluated by different methods. <i>Waste Management</i> , 2017 , 64, 161-170	8.6	43
256	A novel type of controlled low strength material derived from alum sludge and green materials. <i>Construction and Building Materials</i> , 2018 , 165, 792-800	6.7	43
255	Feasible use of large volumes of GGBS in 100% recycled glass architectural mortar. <i>Cement and Concrete Composites</i> , 2014 , 53, 350-356	8.6	43
254	MSWIBA-based cellular alkali-activated concrete incorporating waste glass powder. <i>Cement and Concrete Composites</i> , 2019 , 95, 128-136	8.6	43
253	Sound insulation properties of rubberized lightweight aggregate concrete. <i>Journal of Cleaner Production</i> , 2018 , 172, 3176-3185	10.3	43
252	Properties of mortar prepared with recycled cathode ray tube funnel glass sand at different mineral admixture. <i>Construction and Building Materials</i> , 2013 , 40, 951-960	6.7	42

251	Novel cementitious materials produced from incinerator bottom ash. <i>Resources, Conservation and Recycling</i> , 2008 , 52, 496-510	11.9	42
250	Effects of flue gas desulphurization sludge on the pozzolanic reaction of reject-fly-ash-blended cement pastes. <i>Cement and Concrete Research</i> , 2004 , 34, 1907-1918	10.3	42
249	Improvement in corrosion resistance of recycled aggregate concrete by nano silica suspension modification on recycled aggregates. <i>Cement and Concrete Composites</i> , 2020 , 106, 103476	8.6	42
248	A maturity approach to estimate compressive strength development of CO 2 -cured concrete blocks. <i>Cement and Concrete Composites</i> , 2018 , 85, 153-160	8.6	42
247	Photocatalytic activities of titanium dioxide incorporated architectural mortars: Effects of weathering and activation light. <i>Building and Environment</i> , 2015 , 94, 395-402	6.5	40
246	Improvement of early-age properties for glass-cement mortar by adding nanosilica. <i>Cement and Concrete Composites</i> , 2018 , 89, 18-30	8.6	40
245	Numerical tests of thermal cracking induced by temperature gradient in cement-based composites under thermal loads. <i>Cement and Concrete Composites</i> , 2007 , 29, 103-116	8.6	40
244	Characterization of interfacial transition zone in concrete prepared with carbonated modeled recycled concrete aggregates. <i>Cement and Concrete Research</i> , 2020 , 136, 106175	10.3	39
243	Development of social sustainability assessment method and a comparative case study on assessing recycled construction materials. <i>International Journal of Life Cycle Assessment</i> , 2018 , 23, 1654-	- 1 674	39
242	Sustainable management and utilisation of concrete slurry waste: A case study in Hong Kong. <i>Waste Management</i> , 2017 , 61, 397-404	8.6	38
241	Change in re-use value of incinerated sewage sludge ash due to chemical extraction of phosphorus. <i>Waste Management</i> , 2018 , 74, 404-412	8.6	38
240	Mechanical, durability and environmental aspects of magnesium oxychloride cement boards incorporating waste wood. <i>Journal of Cleaner Production</i> , 2019 , 207, 391-399	10.3	38
239	Limitations and quality upgrading techniques for utilization of MSW incineration bottom ash in engineering applications IA review. <i>Construction and Building Materials</i> , 2018 , 190, 1091-1102	6.7	38
238	Recycling of incinerated sewage sludge ash and cathode ray tube funnel glass in cement mortars. Journal of Cleaner Production, 2017 , 152, 142-149	10.3	37
237	Global perspective on application of controlled low-strength material (CLSM) for trench backfilling [An overview. <i>Construction and Building Materials</i> , 2018 , 158, 535-548	6.7	37
236	Empirical modelling of CO2 uptake by recycled concrete aggregates under accelerated carbonation conditions. <i>Materials and Structures/Materiaux Et Constructions</i> , 2017 , 50, 1	3.4	37
235	Structural Behaviour of Composite Members with Recycled Aggregate Concrete IAn Overview. <i>Advances in Structural Engineering</i> , 2015 , 18, 919-938	1.9	37
234	Properties of partition wall blocks prepared with fresh concrete wastes. <i>Construction and Building Materials</i> , 2012 , 36, 566-571	6.7	37

233	Leaching and Microstructural Analysis of Cement-Based Solidified Wastes. <i>Environmental Science & Emp; Technology</i> , 2000 , 34, 5038-5042	10.3	37
232	Promoting food waste recycling in the commercial and industrial sector by extending the Theory of Planned Behaviour: A Hong Kong case study. <i>Journal of Cleaner Production</i> , 2018 , 204, 1034-1043	10.3	37
231	Synthesis of low-temperature calcium sulfoaluminate-belite cements from industrial wastes and their hydration: Comparative studies between lignite fly ash and bottom ash. <i>Cement and Concrete Composites</i> , 2017 , 83, 10-19	8.6	36
230	Effect of particle size of nanosilica on microstructure of C-S-H and its impact on mechanical strength. <i>Cement and Concrete Composites</i> , 2019 , 97, 312-321	8.6	36
229	Assessment of in-situ alkali-silica reaction (ASR) development of glass aggregate concrete prepared with dry-mix and conventional wet-mix methods by X-ray computed micro-tomography. <i>Cement and Concrete Composites</i> , 2018 , 90, 266-276	8.6	35
228	Recycling incinerated sewage sludge ash (ISSA) as a cementitious binder by lime activation. <i>Journal of Cleaner Production</i> , 2020 , 244, 118856	10.3	35
227	CO 2 curing and fibre reinforcement for green recycling of contaminated wood into high-performance cement-bonded particleboards. <i>Journal of CO2 Utilization</i> , 2017 , 18, 107-116	7.6	34
226	Immobilization of hazardous municipal solid waste incineration fly ash by novel alternative binders derived from cementitious waste. <i>Journal of Hazardous Materials</i> , 2020 , 393, 122386	12.8	34
225	Removal of metallic Al and Al/Zn alloys in MSWI bottom ash by alkaline treatment. <i>Journal of Hazardous Materials</i> , 2018 , 344, 73-80	12.8	34
224	Improving the performance of architectural mortar containing 100% recycled glass aggregates by using SCMs. <i>Construction and Building Materials</i> , 2017 , 153, 975-985	6.7	34
223	Effects of low-alkalinity binders on stabilization/solidification of geogenic As-containing soils: Spectroscopic investigation and leaching tests. <i>Science of the Total Environment</i> , 2018 , 631-632, 1486-1	4 1 94 ^{.2}	33
222	Use of CO curing to enhance the properties of cold bonded lightweight aggregates (CBLAs) produced with concrete slurry waste (CSW) and fine incineration bottom ash (IBA). <i>Journal of Hazardous Materials</i> , 2020 , 381, 120951	12.8	33
221	Slow pyrolysis of municipal solid waste (MSW): A review. <i>Bioresource Technology</i> , 2020 , 312, 123615	11	32
220	Systematic evaluation of the effect of replacing river sand by different particle size ranges of fine recycled concrete aggregates (FRCA) in cement mortars. <i>Construction and Building Materials</i> , 2019 , 209, 147-155	6.7	31
219	Effects of red mud on properties of self-compacting mortar. <i>Journal of Cleaner Production</i> , 2016 , 135, 1170-1178	10.3	31
218	Characterization of Flaws Embedded in Externally Bonded CFRP on Concrete Beams by Infrared Thermography and Shearography. <i>Journal of Nondestructive Evaluation</i> , 2009 , 28, 27-35	2.1	31
217	Comparison of low-waste building technologies adopted in public and private housing projects in Hong Kong. <i>Engineering, Construction and Architectural Management</i> , 2003 , 10, 88-98	3.1	31
216	The attitudes of Guangzhou citizens on waste reduction and environmental issues. <i>Resources, Conservation and Recycling,</i> 1999 , 25, 35-59	11.9	31

215	A system dynamics approach to determine construction waste disposal charge in Hong Kong. Journal of Cleaner Production, 2019 , 241, 118309	10.3	30
214	Development of a method for recycling of CRT funnel glass. <i>Environmental Technology (United Kingdom)</i> , 2012 , 33, 2531-7	2.6	30
213	Valorization of concrete slurry waste (CSW) and fine incineration bottom ash (IBA) into cold bonded lightweight aggregates (CBLAs): Feasibility and influence of binder types. <i>Journal of Hazardous Materials</i> , 2019 , 368, 689-697	12.8	29
212	Co-utilization of waste glass cullet and glass powder in precast concrete products. <i>Construction and Building Materials</i> , 2019 , 223, 210-220	6.7	29
211	X-ray radiation shielding properties of cement mortars prepared with different types of aggregates. <i>Materials and Structures/Materiaux Et Constructions</i> , 2013 , 46, 1133-1141	3.4	29
210	Properties of partition wall blocks prepared with high percentages of recycled clay brick after exposure to elevated temperatures. <i>Construction and Building Materials</i> , 2013 , 49, 56-61	6.7	29
209	Effects of elevated water temperatures on interfacial delaminations, failure modes and shear strength in externally-bonded CFRP-concrete beams using infrared thermography, gray-scale images and direct shear test. <i>Construction and Building Materials</i> , 2009 , 23, 3152-3160	6.7	29
208	Modelling design information to evaluate pre-fabricated and pre-cast design solutions for reducing construction waste in high rise residential buildings. <i>Automation in Construction</i> , 2008 , 17, 333-341	9.6	29
207	StressEtrain behaviour of high-strength concrete at elevated temperatures. <i>Magazine of Concrete Research</i> , 2005 , 57, 535-544	2	29
206	The stabilization of sewage sludge by pulverized fuel ash and related materials. <i>Environment International</i> , 1996 , 22, 705-710	12.9	29
205	Evaluating waste management alternatives by the multiple criteria approach. <i>Resources, Conservation and Recycling,</i> 1996 , 17, 189-210	11.9	29
204	A comparison of liquid-solid and gas-solid accelerated carbonation for enhancement of recycled concrete aggregate. <i>Cement and Concrete Composites</i> , 2021 , 118, 103988	8.6	29
203	Environmental and technical feasibility study of upcycling wood waste into cement-bonded particleboard. <i>Construction and Building Materials</i> , 2018 , 173, 474-480	6.7	28
202	Global warming potential and energy consumption of temporary works in building construction: A case study in Hong Kong. <i>Building and Environment</i> , 2018 , 142, 171-179	6.5	28
201	Characterization of the deterioration of externally bonded CFRP-concrete composites using quantitative infrared thermography. <i>Cement and Concrete Composites</i> , 2010 , 32, 740-746	8.6	28
200	Characterization of alkali-activated thermally treated incinerator bottom ash. <i>Waste Management</i> , 2008 , 28, 1955-62	8.6	28
199	Bacterial-induced mineralization (BIM) for soil solidification and heavy metal stabilization: A critical review. <i>Science of the Total Environment</i> , 2020 , 746, 140967	10.2	28
198	Effect of casting methods and SCMs on properties of mortars prepared with fine MSW incineration bottom ash. <i>Construction and Building Materials</i> , 2018 , 167, 890-898	6.7	27

197	Influence of calcium ion in concrete pore solution on the passivation of galvanized steel bars. <i>Cement and Concrete Research</i> , 2018 , 108, 46-58	10.3	27
196	Dynamic compressive behavior of recycled aggregate concrete. <i>Materials and Structures/Materiaux Et Constructions</i> , 2016 , 49, 4451-4462	3.4	27
195	Influence of steam curing on hardened properties of recycled aggregate concrete. <i>Magazine of Concrete Research</i> , 2006 , 58, 289-299	2	27
194	Sustainable reuse of waste glass and incinerated sewage sludge ash in insulating building products: Functional and durability assessment. <i>Journal of Cleaner Production</i> , 2019 , 236, 117635	10.3	26
193	Waste reduction and recycling strategies for the in-flight services in the airline industry. <i>Resources, Conservation and Recycling</i> , 2003 , 37, 87-99	11.9	26
192	Sustainability analysis of pelletized bio-fuel derived from recycled wood product wastes in Hong Kong. <i>Journal of Cleaner Production</i> , 2016 , 113, 400-410	10.3	25
191	The effect of nanoalumina on early hydration and mechanical properties of cement pastes. <i>Construction and Building Materials</i> , 2019 , 202, 169-176	6.7	25
190	Methodology for upstream estimation of construction waste for new building projects. <i>Journal of Cleaner Production</i> , 2019 , 230, 1003-1012	10.3	24
189	Influence of particle size of glass aggregates on the high temperature properties of dry-mix concrete blocks. <i>Construction and Building Materials</i> , 2019 , 209, 522-531	6.7	24
188	Using microbial carbonate precipitation to improve the properties of recycled aggregate. <i>Construction and Building Materials</i> , 2019 , 228, 116743	6.7	24
187	The effect of flow-through leaching on the diffusivity of heavy metals in stabilized/solidified wastes. <i>Journal of Hazardous Materials</i> , 2001 , 81, 179-92	12.8	24
186	Promoting effective construction and demolition waste management towards sustainable development: A case study of Hong Kong. <i>Sustainable Development</i> , 2020 , 28, 1713-1724	6.7	24
185	Effects of nano-SiO2 and glass powder on mitigating alkali-silica reaction of cement glass mortars. <i>Construction and Building Materials</i> , 2019 , 201, 295-302	6.7	24
184	Synergetic recycling of waste glass and recycled aggregates in cement mortars: Physical, durability and microstructure performance. <i>Cement and Concrete Composites</i> , 2020 , 113, 103632	8.6	23
183	Use of flue gas desulphurisation (FGD) waste and rejected fly ash in waste stabilization/solidification systems. <i>Waste Management</i> , 2006 , 26, 141-9	8.6	23
182	Characterisation of municipal solid waste and its recyclable contents of Guangzhou. <i>Waste Management and Research</i> , 2001 , 19, 473-85	4	23
181	Assessment of long-term reactivity of initially lowly-reactive solid wastes as supplementary cementitious materials (SCMs). <i>Construction and Building Materials</i> , 2020 , 232, 117192	6.7	23
180	Development of nano-silica treatment methods to enhance recycled aggregate concrete. <i>Cement and Concrete Composites</i> , 2021 , 118, 103963	8.6	23

(2000-2018)

179	Pathways of conversion of nitrogen oxides by nano TiO2 incorporated in cement-based materials. <i>Building and Environment</i> , 2018 , 144, 412-418	6.5	23	
178	Spent fluorescent lamp glass as a substitute for fine aggregate in cement mortar. <i>Journal of Cleaner Production</i> , 2017 , 161, 646-654	10.3	22	
177	Using incinerated sewage sludge ash as a high-performance adsorbent for lead removal from aqueous solutions: Performances and mechanisms. <i>Chemosphere</i> , 2019 , 226, 587-596	8.4	22	
176	Use of CRT funnel glass in concrete blocks prepared with different aggregate-to-cement ratios. <i>Green Materials</i> , 2014 , 2, 43-51	3.2	22	
175	Hong Kong citizens' attitude towards waste recycling and waste minimization measures. <i>Resources, Conservation and Recycling</i> , 1994 , 10, 377-400	11.9	22	
174	Sludge biochar as a green additive in cement-based composites: Mechanical properties and hydration kinetics. <i>Construction and Building Materials</i> , 2020 , 262, 120723	6.7	22	
173	A comparative study on the properties of the mortar with the cathode ray tube funnel glass sand at different treatment methods. <i>Construction and Building Materials</i> , 2017 , 148, 900-909	6.7	21	
172	Prediction of the bond strength between non-uniformly corroded steel reinforcement and deteriorated concrete. <i>Construction and Building Materials</i> , 2018 , 187, 1267-1276	6.7	21	
171	Recycling of incinerated sewage sludge ash as an adsorbent for heavy metals removal from aqueous solutions. <i>Journal of Environmental Management</i> , 2019 , 247, 509-517	7.9	21	
170	Domestic waste management and recovery in Hong Kong. <i>Journal of Material Cycles and Waste Management</i> , 2009 , 11, 104-109	3.4	21	
169	A comparison of waste management in Guangzhou and Hong Kong. <i>Resources, Conservation and Recycling</i> , 1998 , 22, 203-216	11.9	21	
168	The Attitudinal Differences in Source Separation and Waste Reduction between the General Public and the Housewives in Hong Kong. <i>Journal of Environmental Management</i> , 1996 , 48, 215-227	7.9	21	
167	Feasibility of wet-extraction of phosphorus from incinerated sewage sludge ash (ISSA) for phosphate fertilizer production: A critical review. <i>Critical Reviews in Environmental Science and Technology</i> , 2021 , 51, 939-971	11.1	21	
166	Contrasting Roles of Maleic Acid in Controlling Kinetics and Selectivity of Sn(IV)- and Cr(III)-Catalyzed Hydroxymethylfurfural Synthesis. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 14264-14274	8.3	21	
165	A ternary optimization of alkali-activated cement mortars incorporating glass powder, slag and calcium aluminate cement. <i>Construction and Building Materials</i> , 2020 , 240, 117983	6.7	20	
164	Optimizing the use of recycled glass materials in alkali activated cement (AAC) based mortars. Journal of Cleaner Production, 2020 , 255, 120228	10.3	20	
163	Influence of chloride ion on depassivation of passive film on galvanized steel bars in concrete pore solution. <i>Construction and Building Materials</i> , 2018 , 166, 572-580	6.7	20	
162	A Comparison of Waste Reduction Practices and the New Environmental Paradigm in Four Southern Chinese Areas. <i>Environmental Management</i> , 2000 , 26, 195-206	3.1	20	

161	Enhancing the accelerated carbonation of recycled concrete aggregates by using reclaimed wastewater from concrete batching plants. <i>Construction and Building Materials</i> , 2020 , 239, 117810	6.7	20
160	High temperatures properties of barite concrete with cathode ray tube funnel glass. <i>Fire and Materials</i> , 2014 , 38, 279-289	1.8	19
159	Fate of metals before and after chemical extraction of incinerated sewage sludge ash. <i>Chemosphere</i> , 2017 , 186, 350-359	8.4	19
158	Rheology behavior of one-part alkali activated slag/glass powder (AASG) pastes. <i>Construction and Building Materials</i> , 2020 , 258, 120381	6.7	19
157	Validation of size estimation of debonds in external wall\(\) composite finishes via passive Infrared thermography and a gradient algorithm. Construction and Building Materials, 2015, 87, 113-124	6.7	18
156	Efficacy of green alternatives and carbon dioxide curing in reactive magnesia cement-bonded particleboards. <i>Journal of Cleaner Production</i> , 2020 , 258, 120997	10.3	18
155	Mixture Design and Reaction Sequence for Recycling Construction Wood Waste into Rapid-Shaping Magnesia Phosphate Cement Particleboard. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 6645-6654	3.9	18
154	Feasible use of municipal solid waste incineration bottom ash in ultra-high performance concrete. <i>Cement and Concrete Composites</i> , 2020 , 114, 103814	8.6	18
153	Improvement of properties of architectural mortars prepared with 100% recycled glass by CO2 curing. <i>Construction and Building Materials</i> , 2018 , 179, 138-150	6.7	18
152	Investigation of cementitious properties of different constituents in municipal solid waste incineration bottom ash as supplementary cementitious materials. <i>Journal of Cleaner Production</i> , 2020 , 258, 120675	10.3	17
151	Thermal and residual mechanical profile of recycled aggregate concrete prepared with carbonated concrete aggregates after exposure to elevated temperatures. <i>Fire and Materials</i> , 2018 , 42, 134-142	1.8	17
150	Influence of the Quality of Recycled Aggregates on the Mechanical and Durability Properties of High Performance Concrete. <i>Waste and Biomass Valorization</i> , 2017 , 8, 1421-1432	3.2	17
149	A study of full-field debond behaviour and durability of CFRP-concrete composite beams by pulsed infrared thermography (IRT). <i>NDT and E International</i> , 2012 , 52, 112-121	4.1	17
148	Properties of cementitious rendering mortar prepared with recycled fine aggregates. <i>Journal Wuhan University of Technology, Materials Science Edition</i> , 2010 , 25, 1053-1056	1	17
147	Improved photocatalytic nitrogen oxides removal using recycled glass-nano-TiO2 composites with NaOH pre-treatment. <i>Journal of Cleaner Production</i> , 2019 , 209, 1095-1104	10.3	17
146	Sewage sludge ash: A comparative evaluation with fly ash for potential use as lime-pozzolan binders. <i>Construction and Building Materials</i> , 2020 , 242, 118160	6.7	16
145	Superior photocatalytic NOx removal of cementitious materials prepared with white cement over ordinary Portland cement and the underlying mechanisms. <i>Cement and Concrete Composites</i> , 2018 , 90, 42-49	8.6	16
144	Comparing the use of sewage sludge ash and glass powder in cement mortars. <i>Environmental Technology (United Kingdom)</i> , 2017 , 38, 1390-1398	2.6	16

143	Influences of chemical activators on incinerator bottom ash. Waste Management, 2009, 29, 544-9	8.6	16
142	Supercritical Carbon Dioxide Extraction of Value-Added Products and Thermochemical Synthesis of Platform Chemicals from Food Waste. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 2821-2829	8.3	16
141	Organic Acid-Regulated Lewis Acidity for Selective Catalytic Hydroxymethylfurfural Production from Rice Waste: An Experimental Computational Study. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 1437-1446	8.3	16
140	Techno-environmental feasibility of wood waste derived fuel for cement production. <i>Journal of Cleaner Production</i> , 2019 , 230, 663-671	10.3	15
139	Versatile photocatalytic functions of self-compacting architectural glass mortars and their inter-relationship. <i>Materials and Design</i> , 2015 , 88, 1260-1268	8.1	15
138	StressEtrain behaviour of fire exposed self-compacting glass concrete. Fire and Materials, 2013, 37, 297	-3:180	15
137	A durability study of externally bonded FRP-concrete beams via full-field infrared thermography (IRT) and quasi-static shear test. <i>Construction and Building Materials</i> , 2013 , 40, 481-491	6.7	15
136	Calcined oil sands fine tailings as a supplementary cementing material for concrete. <i>Cement and Concrete Research</i> , 2004 , 34, 1235-1242	10.3	15
135	Evaluating the environmental impacts of stabilization and solidification technologies for managing hazardous wastes through life cycle assessment: A case study of Hong Kong. <i>Environment International</i> , 2020 , 145, 106139	12.9	15
134	Investigation of cold bonded lightweight aggregates produced with incineration sewage sludge ash (ISSA) and cementitious waste. <i>Journal of Cleaner Production</i> , 2020 , 251, 119709	10.3	15
133	Sustainable stabilization/solidification of arsenic-containing soil by blast slag and cement blends. <i>Chemosphere</i> , 2021 , 271, 129868	8.4	15
132	Tuneable functionalities in layered double hydroxide catalysts for thermochemical conversion of biomass-derived glucose to fructose. <i>Chemical Engineering Journal</i> , 2020 , 383, 122914	14.7	15
131	Comparative evaluation of fire resistance of partition wall blocks prepared with waste materials. Journal of Cleaner Production, 2018 , 182, 156-165	10.3	14
130	Effects of different kinds of recycled fine aggregate on properties of rendering mortar. <i>Journal of Sustainable Cement-Based Materials</i> , 2013 , 2, 43-57	3.6	14
129	Development of high-strength pervious concrete incorporated with high percentages of waste glass. <i>Cement and Concrete Composites</i> , 2020 , 114, 103790	8.6	14
128	Effect of natural and recycled aggregate packing on properties of concrete blocks. <i>Construction and Building Materials</i> , 2021 , 278, 122247	6.7	14
127	Transforming waterworks sludge into controlled low-strength material: Bench-scale optimization and field test validation. <i>Journal of Environmental Management</i> , 2019 , 232, 254-263	7.9	14
126	Recycling hazardous textile effluent sludge in cement-based construction materials: Physicochemical interactions between sludge and cement. <i>Journal of Hazardous Materials</i> , 2020 , 381, 121034	12.8	14

125	Simulation Approach to Evaluating Cost Efficiency of Selective Demolition Practices: Case of Hong Kong Kai Tak Airport Demolition. <i>Journal of Construction Engineering and Management - ASCE</i> , 2009 , 135, 448-457	4.2	13
124	The effect of a modified method of lime-stabilisation sewage treatment on enteric pathogens. <i>Environment International</i> , 1998 , 24, 783-788	12.9	13
123	Application Framework for Mapping and Simulation of Waste Handling Processes in Construction. Journal of Construction Engineering and Management - ASCE, 2006 , 132, 1212-1221	4.2	13
122	A feasibility study on the utilization of r-FA in SCC. Cement and Concrete Research, 2004, 34, 2337-2339	10.3	13
121	ASR expansion of alkali-activated cement glass aggregate mortars. <i>Construction and Building Materials</i> , 2020 , 261, 119925	6.7	12
120	The mechanism of supplementary cementitious materials enhancing the water resistance of magnesium oxychloride cement (MOC): A comparison between pulverized fuel ash and incinerated sewage sludge ash. <i>Cement and Concrete Composites</i> , 2020 , 109, 103562	8.6	12
119	Development of a Novel Binder Using Lime and Incinerated Sewage Sludge Ash to Stabilize and Solidify Contaminated Marine Sediments with High Water Content as a Fill Material. <i>Journal of Materials in Civil Engineering</i> , 2019 , 31, 04019245	3	12
118	Dynamic leaching behavior of geogenic As in soils after cement-based stabilization/solidification. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 27822-27832	5.1	12
117	Recovery systems in Guangzhou and Hong Kong. <i>Resources, Conservation and Recycling</i> , 1998 , 23, 29-45	11.9	12
116	Deterioration and Recovery of Metakaolin Blended Concrete Subjected to High Temperature. <i>Fire Technology</i> , 2003 , 39, 35-45	3	12
115	Mechanistic study on initial passivation and surface chemistry of steel bars in nano-silica cement pastes. <i>Cement and Concrete Composites</i> , 2020 , 112, 103661	8.6	12
114	Enhancement of recycled aggregates and concrete by combined treatment of spraying Ca2+ rich wastewater and flow-through carbonation. <i>Construction and Building Materials</i> , 2021 , 277, 122202	6.7	12
113	Production of lightweight aggregate ceramsite from red mud and municipal solid waste incineration bottom ash: Mechanism and optimization. <i>Construction and Building Materials</i> , 2021 , 287, 122993	6.7	12
112	Effects of sodium/calcium cation exchange on the mechanical properties of calcium silicate hydrate (C-S-H). <i>Construction and Building Materials</i> , 2020 , 243, 118283	6.7	12
111	Characterization of CBH formed in coupled CO2Water cured Portland cement pastes. <i>Materials and Structures/Materiaux Et Constructions</i> , 2018 , 51, 1	3.4	12
110	Enhancing anti-microbial properties of wood-plastic composites produced from timber and plastic wastes. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 12227-12237	5.1	11
109	Improving the high temperature mechanical properties of alkali activated cement (AAC) mortars using recycled glass as aggregates. <i>Cement and Concrete Composites</i> , 2020 , 112, 103654	8.6	11
108	Three-dimensional spatial variability of arsenic-containing soil from geogenic source in Hong Kong: Implications on sampling strategies. <i>Science of the Total Environment</i> , 2018 , 633, 836-847	10.2	11

107	Optimization of gas-solid carbonation conditions of recycled aggregates using a linear weighted sum method. <i>Developments in the Built Environment</i> , 2021 , 7, 100053	5.1	11
106	Conceptual design and performance evaluation of high strength pervious concrete. <i>Construction and Building Materials</i> , 2021 , 269, 121342	6.7	11
105	Dispersion of ultrasonic guided surface wave by honeycomb in early-aged concrete. <i>NDT and E International</i> , 2013 , 57, 7-16	4.1	10
104	The feasibility of planting on stabilized sludge-amended soil. <i>Environment International</i> , 1999 , 25, 465-4	762.9	10
103	Rheological behaviour, mechanical performance, and NOx removal of photocatalytic mortar with combined clay brick sands-based and recycled glass-based nano-TiO2 composite photocatalysts. <i>Construction and Building Materials</i> , 2020 , 240, 117698	6.7	10
102	Influence of Seawater on the Morphological Evolution and the Microchemistry of Hydration Products of Tricalcium Silicates (C3S). <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 15875-15887	8.3	10
101	Recycling of waste glass in construction materials 2019 , 153-167		10
100	A novel upcycling technique of recycled cement paste powder by a two-step carbonation process. Journal of Cleaner Production, 2021 , 290, 125192	10.3	10
99	Recycling sediment, calcium carbide slag and ground granulated blast-furnace slag into novel and sustainable cementitious binder for production of eco-friendly mortar. <i>Construction and Building Materials</i> , 2021 , 305, 124772	6.7	10
98	Utilization of municipal solid waste incineration bottom ash (IBA) aggregates in high-strength pervious concrete. <i>Resources, Conservation and Recycling</i> , 2021 , 174, 105736	11.9	10
97	Influence of Dust and Oil Accumulation on Effectiveness of Photocatalytic Concrete Surfaces. Journal of Environmental Engineering, ASCE, 2017, 143, 04017040	2	9
96	Internal curing effect of high volume furnace bottom ash (FBA) incorporation on lightweight aggregate concrete. <i>Journal of Sustainable Cement-Based Materials</i> , 2017 , 6, 366-383	3.6	9
95	Hybrid non-destructive evaluation methods for characterizing chloride-induced corrosion in concrete. <i>NDT and E International</i> , 2019 , 107, 102123	4.1	9
94	Use of self-hardening slurry for trench cutoff wall: A review. <i>Construction and Building Materials</i> , 2021 , 286, 122959	6.7	9
93	Efficiency and mechanism of nano-silica pre-spraying treatment in performance enhancement of recycled aggregate concrete. <i>Construction and Building Materials</i> , 2021 , 301, 124093	6.7	9
92	Using artificial neural networks to assess the applicability of recycled aggregate classification by different specifications. <i>Materials and Structures/Materiaux Et Constructions</i> , 2017 , 50, 1	3.4	8
91	Enhanced passivation of galvanized steel bars in nano-silica modified cement mortars. <i>Cement and Concrete Composites</i> , 2020 , 111, 103626	8.6	8
90	Applications of Nondestructive Evaluation Techniques in Concrete Inspection. <i>HKIE Transactions</i> , 2012 , 19, 34-41	2.9	8

89	Accounting for the shortage of solid waste disposal facilities in Southern China. <i>Environmental Conservation</i> , 2001 , 28, 99-103	3.3	8
88	Factors affecting the properties of recycled concrete by using neural networks. <i>Computers and Concrete</i> , 2014 , 14, 547-561		8
87	Efficiencies of carbonation and nano silica treatment methods in enhancing the performance of recycled aggregate concrete. <i>Construction and Building Materials</i> , 2021 , 308, 125080	6.7	8
86	Recycling of waste glass in dry-mixed concrete blocks: Evaluation of alkali-silica reaction (ASR) by accelerated laboratory tests and long-term field monitoring. <i>Construction and Building Materials</i> , 2020 , 262, 120865	6.7	8
85	Development and characteristics of ultra high-performance lightweight cementitious composites (UHP-LCCs). <i>Cement and Concrete Research</i> , 2021 , 145, 106462	10.3	8
84	Improvement in properties of concrete with modified RCA by microbial induced carbonate precipitation. <i>Cement and Concrete Composites</i> , 2021 , 124, 104251	8.6	8
83	Distribution of ASR gel in conventional wet-mix glass mortars and mechanically produced dry-mix glass blocks. <i>Construction and Building Materials</i> , 2019 , 229, 116916	6.7	7
82	Water resistance of magnesium oxychloride cement wood board with the incorporation of supplementary cementitious materials. <i>Construction and Building Materials</i> , 2020 , 255, 119145	6.7	7
81	Transfer mechanisms of contaminants in cement-based stabilized/solidified wastes. <i>Journal of Hazardous Materials</i> , 2006 , 129, 290-6	12.8	7
80	Tailoring acidity and porosity of alumina catalysts via transition metal doping for glucose conversion in biorefinery. <i>Science of the Total Environment</i> , 2020 , 704, 135414	10.2	7
79	Use of thermally modified waste concrete powder for removal of Pb (II) from wastewater: Effects and mechanism. <i>Environmental Pollution</i> , 2021 , 277, 116776	9.3	7
78	Multi-scale investigation on mechanical behavior and microstructural alteration of C-S-H in carbonated Alite paste. <i>Cement and Concrete Research</i> , 2021 , 144, 106448	10.3	7
77	Novel recycling of incinerated sewage sludge ash (ISSA) and waste bentonite as ceramsite for Pb-containing wastewater treatment: Performance and mechanism. <i>Journal of Environmental Management</i> , 2021 , 288, 112382	7.9	7
76	Using Neural Networks to Determine the Significance of Aggregate Characteristics Affecting the Mechanical Properties of Recycled Aggregate Concrete. <i>Applied Sciences (Switzerland)</i> , 2018 , 8, 2171	2.6	7
75	Fast enhancement of recycled fine aggregates properties by wet carbonation. <i>Journal of Cleaner Production</i> , 2021 , 313, 127867	10.3	7
74	Heat of hydration of cement pastes containing high-volume fly ash and silica fume. <i>Journal of Thermal Analysis and Calorimetry</i> , 2019 , 138, 2065-2075	4.1	6
73	Tracing and imaging minor water seepage of concealed PVC pipe in a reinforced concrete wall by high-frequency ground penetrating radar. <i>Construction and Building Materials</i> , 2017 , 151, 840-847	6.7	6
72	Stress-strain behaviour of cement mortars containing recycled glass during and after exposure to elevated temperatures. <i>Cement and Concrete Composites</i> , 2021 , 118, 103970	8.6	6

(2021-2021)

71	Arsenate(V) removal from aqueous system by using modified incinerated sewage sludge ash (ISSA) as a novel adsorbent. <i>Chemosphere</i> , 2021 , 270, 129423	8.4	6
70	Using MgO activated slag and calcium bentonite slurry to produce a novel vertical barrier material: Performances and mechanisms. <i>Construction and Building Materials</i> , 2021 , 291, 123365	6.7	6
69	Synthesis of amorphous nano-silica from recycled concrete fines by two-step wet carbonation. <i>Cement and Concrete Research</i> , 2021 , 147, 106526	10.3	6
68	Recycling of Glass Cullet and Glass Powder in Alkali-Activated Cement: Mechanical Properties and AlkaliBilica Reaction. <i>Waste and Biomass Valorization</i> , 2020 , 11, 7159-7169	3.2	5
67	Spalling of concrete cover of fiber-reinforced polymer reinforced concrete under thermal loads. <i>Materials and Structures/Materiaux Et Constructions</i> , 2006 , 39, 991-999	3.4	5
66	FACTORS AFFECTING WASTE DISPOSAL FACILITIES SITING IN SOUTHERN CHINA. <i>Journal of Environmental Assessment Policy and Management</i> , 2002 , 04, 241-262	1.3	5
65	Recycling of waste glass powder as paste replacement in green UHPFRC. <i>Construction and Building Materials</i> , 2022 , 316, 125719	6.7	5
64	Characterization and optimization of a two-step carbonation process for valorization of recycled cement paste fine powder. <i>Construction and Building Materials</i> , 2021 , 278, 122343	6.7	5
63	Strategies for Effective Waste Reduction and Management of Building Construction Projects in Highly Urbanized Cities Case Study of Hong Kong. <i>Buildings</i> , 2021 , 11, 214	3.2	5
62	High temperature performance of wet-mix and dry-mix mortars prepared with different contents and size gradings of glass aggregates: Hot test and cold test. <i>Cement and Concrete Composites</i> , 2020 , 108, 103548	8.6	4
61	GPR data analysis in time-frequency domain 2012 ,		4
60	Engineering and microstructure properties of contaminated marine sediments solidified by high content of incinerated sewage sludge ash. <i>Journal of Rock Mechanics and Geotechnical Engineering</i> , 2020 ,	5.3	4
59	Alkaline modification of the acid residue of incinerated sewage sludge ash after phosphorus recovery for heavy metal removal from aqueous solutions. <i>Waste Management</i> , 2021 , 123, 80-87	8.6	4
58	A cross-region analysis of commercial food waste recycling behaviour. <i>Chemosphere</i> , 2021 , 274, 129750	8.4	4
57	Utilization of glass cullet to enhance the performance of recycled aggregate unbound sub-base. Journal of Cleaner Production, 2021 , 288, 125083	10.3	4
56	Effect of seawater as mixing water on the hydration behaviour of tricalcium aluminate. <i>Cement and Concrete Research</i> , 2021 , 149, 106565	10.3	4
55	Development of high performance lightweight concrete using ultra high performance cementitious composite and different lightweight aggregates. <i>Cement and Concrete Composites</i> , 2021 , 124, 104277	8.6	4
54	Novel recycling of phosphorus-recovered incinerated sewage sludge ash residues by co-pyrolysis with lignin for reductive/sorptive removal of hexavalent chromium from aqueous solutions. <i>Chemosphere</i> , 2021 , 285, 131434	8.4	4

53	Precast architectural tiles produced by double-layer casting method. <i>Cement and Concrete Composites</i> , 2016 , 66, 73-81	8.6	3
52	MANAGEMENT AND RECYCLING OF DEMOLITION WASTE IN HONG KONG. Waste Management and Research, 1997 , 15, 561-572	4	3
51	Comparative studies of three methods for activating rejected fly ash. <i>Advances in Cement Research</i> , 2006 , 18, 165-170	1.8	3
50	Phase assemblance evolution during wet carbonation of recycled concrete fines. <i>Cement and Concrete Research</i> , 2022 , 154, 106733	10.3	3
49	Effect of the Ti-extracted residue on compressive strength and microstructural properties of modified cement mortar. <i>Construction and Building Materials</i> , 2022 , 320, 126190	6.7	3
48	Characteristics and production of semi-dry lightweight concrete with cold bonded aggregates made from recycling concrete slurry waste (CSW) and municipal solid waste incineration bottom ash (MSWIBA). <i>Journal of Building Engineering</i> , 2022 , 45, 103434	5.2	3
47	Sewage sludge ash-incorporated stabilisation/solidification for recycling and remediation of marine sediments. <i>Journal of Environmental Management</i> , 2022 , 301, 113877	7.9	3
46	Highly-efficient green photocatalytic cementitious materials with robust weathering resistance: From laboratory to application. <i>Environmental Pollution</i> , 2021 , 273, 116510	9.3	3
45	Utilization of CO2 cured CSW-MSWIBA cold bonded aggregate into lightweight concrete products for masonry units. <i>Construction and Building Materials</i> , 2021 , 276, 122203	6.7	3
44	Influence of seawater on the mechanical and microstructural properties of lime-incineration sewage sludge ash pastes. <i>Construction and Building Materials</i> , 2021 , 278, 122364	6.7	3
43	StressBtrain Curve and Carbonation Resistance of Recycled Aggregate Concrete after Using Different RCA Treatment Techniques. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 4283	2.6	3
42	Mechanisms on Accelerating Hydration of Alite Mixed with Inorganic Salts in Seawater and Characteristics of Hydration Products. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 10479-10490	8.3	3
41	Comparative studies on passivation and corrosion behaviors of two types of steel bars in simulated concrete pore solution. <i>Construction and Building Materials</i> , 2021 , 266, 120971	6.7	3
40	Reaction mechanisms of alkali-activated glass powder-ggbs-CAC composites. <i>Cement and Concrete Composites</i> , 2021 , 122, 104143	8.6	3
39	Recycling of waste glass in cement mortars: Mechanical properties under high temperature loading. <i>Resources, Conservation and Recycling</i> , 2021 , 174, 105831	11.9	3
38	Long-term shrinkage and mechanical properties of fully recycled aggregate concrete: Testing and modelling. <i>Cement and Concrete Composites</i> , 2022 , 104527	8.6	3
37	Formalized Approach to Discretize a Continuous Plant in Construction Simulations. <i>Journal of Construction Engineering and Management - ASCE</i> , 2014 , 140, 04014032	4.2	2
36	Enzymatically induced phosphate precipitation (EIPP) for stabilization/solidification (S/S) treatment of heavy metal tailings. <i>Construction and Building Materials</i> , 2022 , 314, 125577	6.7	2

(2021-2022)

35	Using hazardous barium slag as a novel admixture for alkali activated slag cement. <i>Cement and Concrete Composites</i> , 2022 , 125, 104332	8.6	2
34	Comparison of the mechanically compacted dry-mix and ordinary vibrated wet-mix glass concretes after exposure to elevated temperatures. <i>Cement and Concrete Composites</i> , 2020 , 114, 103720	8.6	2
33	Influence of a Superplasticizer on Initial Corrosion of Galvanized Steel Bars in Concrete Pore Solution. <i>Journal of Materials in Civil Engineering</i> , 2021 , 33, 04021113	3	2
32	Sequestration of carbon dioxide by RCAs and enhancement of properties of RAC by accelerated carbonation 2019 , 477-497		2
31	Mechanical properties of colloidal calcium-silicate-hydrate gel with different gel-pore ionic solutions: A mesoscale study. <i>Microporous and Mesoporous Materials</i> , 2021 , 316, 110944	5.3	2
30	Early-age and microstructural properties of glass powder blended cement paste: Improvement by seawater. <i>Cement and Concrete Composites</i> , 2021 , 122, 104165	8.6	2
29	Effect of NaCl and MgCl2 on the hydration of lime-pozzolan blend by recycling sewage sludge ash. <i>Journal of Cleaner Production</i> , 2021 , 313, 127759	10.3	2
28	Immobilization of high-Pb contaminated soil by oxalic acid activated incinerated sewage sludge ash. <i>Environmental Pollution</i> , 2021 , 284, 117120	9.3	2
27	Recycle of large amount cathode ray tube funnel glass sand to mortar with supplementary cementitious materials. <i>Construction and Building Materials</i> , 2021 , 308, 124953	6.7	2
26	Immobilization and recycling of contaminated marine sediments in cement-based materials incorporating iron-biochar composites <i>Journal of Hazardous Materials</i> , 2022 , 435, 128971	12.8	2
25	Fundamental behavior of recycled aggregate concrete - Overview II: Durability and enhancement. <i>Magazine of Concrete Research</i> ,1-40	2	2
24	Photocatalytic nano-mortars 2020 , 273-296		1
23	Corrosion behavior of carbon steel in chloride-contaminated ultra-high-performance cement pastes. <i>Cement and Concrete Composites</i> , 2022 , 104443	8.6	1
22	Strength degradation of seawater-mixed alite pastes: an explanation from statistical nanoindentation perspective. <i>Cement and Concrete Research</i> , 2022 , 152, 106669	10.3	1
21	Modification of recycled aggregate by spraying colloidal nano silica and silica fume. <i>Materials and Structures/Materiaux Et Constructions</i> , 2021 , 54, 1	3.4	1
20	Deep insight on mechanism and contribution of As(V) removal by thermal modification waste concrete powder. <i>Science of the Total Environment</i> , 2022 , 807, 150764	10.2	1
19	Mechanism of strength evolution of seawater OPC pastes. <i>Advances in Structural Engineering</i> , 2021 , 24, 1256-1266	1.9	1
18	Hydration, mechanical properties and microstructure of lime-pozzolana pastes by recycling waste sludge ash under marine environment. <i>Journal of Cleaner Production</i> , 2021 , 310, 127441	10.3	1

17	Fundamental behavior of recycled aggregate concrete - Overview I: Strength and deformation. <i>Magazine of Concrete Research</i> ,1-39	2	1
16	Mix design and performance of lightweight ultra high-performance concrete. <i>Materials and Design</i> , 2022 , 216, 110553	8.1	1
15	Improving the bonding capacity of recycled concrete aggregate by creating a reactive shell with aqueous carbonation. <i>Construction and Building Materials</i> , 2021 , 125733	6.7	0
14	Effect of Cement Types on Photocatalytic NOx Removal and Its Underlying Mechanisms 2015 , 333-340		0
13	Design optimization and characterization of a green product by combined geopolymerization of sewage sludge ash with metakaolin. <i>Applied Clay Science</i> , 2021 , 214, 106271	5.2	0
12	Upcycling of air pollution control residue waste into cementitious product through geopolymerization technology. <i>Resources, Conservation and Recycling</i> , 2022 , 181, 106231	11.9	0
11	Recycling of phosphogypsum and red mud in low carbon and green cementitious materials for vertical barrier <i>Science of the Total Environment</i> , 2022 , 155925	10.2	0
10	Effects of seawater on UHPC: Macro and microstructure properties. <i>Construction and Building Materials</i> , 2022 , 340, 127767	6.7	0
9	Enhancing the resistance to microbial induced corrosion of alkali-activated glass powder/GGBS mortars by calcium aluminate cement. <i>Construction and Building Materials</i> , 2022 , 341, 127912	6.7	0
8	Strategy for preventing explosive spalling and enhancing material efficiency of lightweight ultra high-performance concrete. <i>Cement and Concrete Research</i> , 2022 , 158, 106842	10.3	О
7	Phosphorus (P) [recovery and reuse as fertilizer from incinerated sewage sludge ash (ISSA) 2020 , 263-28	38	
6	Response to Comment on Deaching and Microstructural Analysis of Cement-Based Solidified Wastes Environmental Science & Environ	10.3	
5	Sustainable utilization of incinerated sewage sludge ash 2022 , 211-225		
4	Evaluating comprehensive carbon emissions of solidification/stabilization technologies: a case study 2022 , 517-530		
3	An innovative way to enhance the high temperature properties of alkali activated cement mortars prepared by using glass powder as precursor. <i>Materials and Structures/Materiaux Et Constructions</i> , 2021 , 54, 1	3.4	
2	Cement treatment of recycled concrete aggregates and incinerator bottom ash as road bases in pavements 2021 , 617-634		
1	Comprehensive environmental evaluation of photocatalytic eco-blocks produced with recycled		

materials **2021**, 567-582