
Chi-Sun Poon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9532845/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heavy metal contamination of urban soils and street dusts in Hong Kong. Applied Geochemistry, 2001, 16, 1361-1368.	1.4	872
2	Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates. Construction and Building Materials, 2004, 18, 461-468.	3.2	749
3	Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete. Cement and Concrete Research, 2004, 34, 31-36.	4.6	637
4	Photocatalytic construction and building materials: From fundamentals to applications. Building and Environment, 2009, 44, 1899-1906.	3.0	603
5	Degree of hydration and gel/space ratio of high-volume fly ash/cement systems. Cement and Concrete Research, 2000, 30, 747-756.	4.6	539
6	Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete. Construction and Building Materials, 2006, 20, 858-865.	3.2	503
7	Comparisons of natural and recycled aggregate concretes prepared with the addition of different mineral admixtures. Cement and Concrete Composites, 2011, 33, 788-795.	4.6	469
8	Feasible use of recycled concrete aggregates and crushed clay brick as unbound road sub-base. Construction and Building Materials, 2006, 20, 578-585.	3.2	455
9	Enhancing the durability properties of concrete prepared with coarse recycled aggregate. Construction and Building Materials, 2012, 35, 69-76.	3.2	433
10	Quantifying the waste reduction potential of using prefabrication in building construction in Hong Kong. Waste Management, 2009, 29, 309-320.	3.7	424
11	Properties of recycled aggregate concrete made with recycled aggregates with different amounts of old adhered mortars. Materials & Design, 2014, 58, 19-29.	5.1	381
12	Properties of self-compacting concrete prepared with coarse and fine recycled concrete aggregates. Cement and Concrete Composites, 2009, 31, 622-627.	4.6	380
13	Hydration and properties of nano-TiO2 blended cement composites. Cement and Concrete Composites, 2012, 34, 642-649.	4.6	376
14	Comparison of the strength and durability performance of normal- and high-strength pozzolanic concretes at elevated temperatures. Cement and Concrete Research, 2001, 31, 1291-1300.	4.6	370
15	Influence of Fly Ash as Cement Replacement on the Properties of Recycled Aggregate Concrete. Journal of Materials in Civil Engineering, 2007, 19, 709-717.	1.3	365
16	Long-term mechanical and durability properties of recycled aggregate concrete prepared with the incorporation of fly ash. Cement and Concrete Composites, 2013, 37, 12-19.	4.6	365
17	Properties of concrete prepared with PVA-impregnated recycled concrete aggregates. Cement and Concrete Composites, 2010, 32, 649-654.	4.6	358
18	Assessment of mechanical properties of concrete incorporating carbonated recycled concrete aggregates. Cement and Concrete Composites, 2016, 65, 67-74.	4.6	341

#	Article	IF	CITATIONS
19	Rate of pozzolanic reaction of metakaolin in high-performance cement pastes. Cement and Concrete Research, 2001, 31, 1301-1306.	4.6	332
20	Compressive behavior of fiber reinforced high-performance concrete subjected to elevated te tevated temperatures. Cement and Concrete Research, 2004, 34, 2215-2222.	4.6	331
21	Prediction of compressive strength of recycled aggregate concrete using artificial neural networks. Construction and Building Materials, 2013, 40, 1200-1206.	3.2	325
22	Comparative environmental evaluation of aggregate production from recycled waste materials and virgin sources by LCA. Resources, Conservation and Recycling, 2016, 109, 67-77.	5.3	320
23	On-site sorting of construction and demolition waste in Hong Kong. Resources, Conservation and Recycling, 2001, 32, 157-172.	5.3	319
24	Use of recycled aggregates in molded concrete bricks and blocks. Construction and Building Materials, 2002, 16, 281-289.	3.2	319
25	Heavy metal speciation and leaching behaviors in cement based solidified/stabilized waste materials. Journal of Hazardous Materials, 2001, 82, 215-230.	6.5	318
26	A study on high strength concrete prepared with large volumes of low calcium fly ash. Cement and Concrete Research, 2000, 30, 447-455.	4.6	317
27	Sustainable construction aspects of using prefabrication in dense urban environment: a Hong Kong case study. Construction Management and Economics, 2008, 26, 953-966.	1.8	299
28	Use of phase change materials for thermal energy storage in concrete: An overview. Construction and Building Materials, 2013, 46, 55-62.	3.2	299
29	Use of a CO2 curing step to improve the properties of concrete prepared with recycled aggregates. Cement and Concrete Composites, 2014, 45, 22-28.	4.6	287
30	Influence of silane-based water repellent on the durability properties of recycled aggregate concrete. Cement and Concrete Composites, 2013, 35, 32-38.	4.6	273
31	Properties of lightweight aggregate concrete prepared with PVC granules derived from scraped PVC pipes. Waste Management, 2009, 29, 621-628.	3.7	272
32	Influence of recycled aggregates on long term mechanical properties and pore size distribution of concrete. Cement and Concrete Composites, 2011, 33, 286-291.	4.6	262
33	Durability of recycled aggregate concrete prepared with carbonated recycled concrete aggregates. Cement and Concrete Composites, 2017, 84, 214-221.	4.6	251
34	Green remediation of As and Pb contaminated soil using cement-free clay-based stabilization/solidification. Environment International, 2019, 126, 336-345.	4.8	249
35	Experimental study on CO2 curing for enhancement of recycled aggregate properties. Construction and Building Materials, 2014, 67, 3-7.	3.2	248
36	Performance Enhancement of Recycled Concrete Aggregates through Carbonation. Journal of Materials in Civil Engineering, 2015, 27, .	1.3	237

#	Article	lF	CITATIONS
37	Properties of self-compacting concrete prepared with recycled glass aggregate. Cement and Concrete Composites, 2009, 31, 107-113.	4.6	236
38	Paving blocks made with recycled concrete aggregate and crushed clay brick. Construction and Building Materials, 2006, 20, 569-577.	3.2	228
39	Sustainable food waste management towards circular bioeconomy: Policy review, limitations and opportunities. Bioresource Technology, 2020, 297, 122497.	4.8	225
40	Effect of the quality of parent concrete on the properties of high performance recycled aggregate concrete. Construction and Building Materials, 2015, 77, 501-508.	3.2	224
41	Compressive behaviour of recycled aggregate concrete under impact loading. Cement and Concrete Research, 2015, 71, 46-55.	4.6	223
42	Properties of concrete prepared with crushed fine stone, furnace bottom ash and fine recycled aggregate as fine aggregates. Construction and Building Materials, 2009, 23, 2877-2886.	3.2	219
43	The use of recycled aggregate in concrete in Hong Kong. Resources, Conservation and Recycling, 2007, 50, 293-305.	5.3	217
44	Influence of carbonated recycled concrete aggregate on properties of cement mortar. Construction and Building Materials, 2015, 98, 1-7.	3.2	217
45	Reducing building waste at construction sites in Hong Kong. Construction Management and Economics, 2004, 22, 461-470.	1.8	215
46	Life cycle design and prefabrication in buildings: A review and case studies in Hong Kong. Automation in Construction, 2014, 39, 195-202.	4.8	212
47	NO removal efficiency of photocatalytic paving blocks prepared with recycled materials. Construction and Building Materials, 2007, 21, 1746-1753.	3.2	205
48	Strength and durability recovery of fire-damaged concrete after post-fire-curing. Cement and Concrete Research, 2001, 31, 1307-1318.	4.6	202
49	Performance of metakaolin concrete at elevated temperatures. Cement and Concrete Composites, 2003, 25, 83-89.	4.6	194
50	Influence of fly ash as a cement addition on the hardened properties of recycled aggregate concrete. Materials and Structures/Materiaux Et Constructions, 2008, 41, 1191-1201.	1.3	186
51	Influence of recycled aggregate on slump and bleeding of fresh concrete. Materials and Structures/Materiaux Et Constructions, 2007, 40, 981-988.	1.3	185
52	Impact of high temperature on PFA concrete. Cement and Concrete Research, 2001, 31, 1065-1073.	4.6	184
53	Properties of concrete prepared with low-grade recycled aggregates. Construction and Building Materials, 2012, 36, 881-889.	3.2	180
54	Biochar as green additives in cement-based composites with carbon dioxide curing. Journal of Cleaner Production, 2020, 258, 120678.	4.6	180

#	Article	IF	CITATIONS
55	Recent studies on mechanical properties of recycled aggregate concrete in China—A review. Science China Technological Sciences, 2012, 55, 1463-1480.	2.0	177
56	Sustainable stabilization/solidification of municipal solid waste incinerator fly ash by incorporation of green materials. Journal of Cleaner Production, 2019, 222, 335-343.	4.6	177
57	Low-carbon and low-alkalinity stabilization/solidification of high-Pb contaminated soil. Chemical Engineering Journal, 2018, 351, 418-427.	6.6	174
58	Effects of nano-particles on failure process and microstructural properties of recycled aggregate concrete. Construction and Building Materials, 2017, 142, 42-50.	3.2	167
59	Comparing carbon emissions of precast and cast-in-situ construction methods – A case study of high-rise private building. Construction and Building Materials, 2015, 99, 39-53.	3.2	163
60	Using artificial neural networks for predicting the elastic modulus of recycled aggregate concrete. Construction and Building Materials, 2013, 44, 524-532.	3.2	161
61	Comparative LCA on using waste materials in the cement industry: A Hong Kong case study. Resources, Conservation and Recycling, 2017, 120, 199-208.	5.3	160
62	CO2 curing for improving the properties of concrete blocks containing recycled aggregates. Cement and Concrete Composites, 2013, 42, 1-8.	4.6	159
63	Influence of lead on stabilization/solidification by ordinary Portland cement and magnesium phosphate cement. Chemosphere, 2018, 190, 90-96.	4.2	158
64	Photocatalytic cement-based materials: Comparison of nitrogen oxides and toluene removal potentials and evaluation of self-cleaning performance. Building and Environment, 2011, 46, 1827-1833.	3.0	157
65	Aluminium-biochar composites as sustainable heterogeneous catalysts for glucose isomerisation in a biorefinery. Green Chemistry, 2019, 21, 1267-1281.	4.6	157
66	Activation of fly ash/cement systems using calcium sulfate anhydrite (CaSO4). Cement and Concrete Research, 2001, 31, 873-881.	4.6	156
67	Management of construction waste in public housing projects in Hong Kong. Construction Management and Economics, 2004, 22, 675-689.	1.8	155
68	Effects of crushed glass cullet sizes, casting methods and pozzolanic materials on ASR of concrete blocks. Construction and Building Materials, 2011, 25, 2611-2618.	3.2	152
69	Novel synergy of Si-rich minerals and reactive MgO for stabilisation/solidification of contaminated sediment. Journal of Hazardous Materials, 2019, 365, 695-706.	6.5	151
70	Utilization of recycled glass derived from cathode ray tube glass as fine aggregate in cement mortar. Journal of Hazardous Materials, 2011, 192, 451-456.	6.5	150
71	Design issues of using prefabrication in Hong Kong building construction. Construction Management and Economics, 2010, 28, 1025-1042.	1.8	146
72	The cause and influence of self-cementing properties of fine recycled concrete aggregates on the properties of unbound sub-base. Waste Management, 2006, 26, 1166-1172.	3.7	144

#	Article	IF	CITATIONS
73	The roles of biochar as green admixture for sediment-based construction products. Cement and Concrete Composites, 2019, 104, 103348.	4.6	144
74	Sustainable design of pervious concrete using waste glass and recycled concrete aggregate. Journal of Cleaner Production, 2019, 234, 1102-1112.	4.6	141
75	Management and recycling of waste glass in concrete products: Current situations in Hong Kong. Resources, Conservation and Recycling, 2013, 70, 25-31.	5.3	140
76	Utilization of red mud derived from bauxite in self-compacting concrete. Journal of Cleaner Production, 2016, 112, 384-391.	4.6	140
77	Properties of architectural mortar prepared with recycled glass with different particle sizes. Materials & Design, 2011, 32, 2675-2684.	5.1	138
78	A comparative study on the feasible use of recycled beverage and CRT funnel glass as fine aggregate in cement mortar. Journal of Cleaner Production, 2012, 29-30, 46-52.	4.6	136
79	Feasibility of using recycled glass in architectural cement mortars. Cement and Concrete Composites, 2011, 33, 848-854.	4.6	134
80	Use of waste glass in alkali activated cement mortar. Construction and Building Materials, 2018, 160, 399-407.	3.2	133
81	Production of 5-hydroxymethylfurfural from starch-rich food waste catalyzed by sulfonated biochar. Bioresource Technology, 2018, 252, 76-82.	4.8	132
82	Use of recycled CRT funnel glass as fine aggregate in dry-mixed concrete paving blocks. Journal of Cleaner Production, 2014, 68, 209-215.	4.6	131
83	Effect of curing parameters on CO2 curing of concrete blocks containing recycled aggregates. Cement and Concrete Composites, 2016, 71, 122-130.	4.6	131
84	Experimental study of micro/macro crack development and stress–strain relations of cement-based composite materials at elevated temperatures. Cement and Concrete Research, 2004, 34, 789-797.	4.6	130
85	Photocatalytic activity of titanium dioxide modified concrete materials – Influence of utilizing recycled glass cullets as aggregates. Journal of Environmental Management, 2009, 90, 3436-3442.	3.8	127
86	Photocatalytic Cementitious Materials: Influence of the Microstructure of Cement Paste on Photocatalytic Pollution Degradation. Environmental Science & Technology, 2009, 43, 8948-8952.	4.6	127
87	Effect of further water curing on compressive strength and microstructure of CO2-cured concrete. Cement and Concrete Composites, 2016, 72, 80-88.	4.6	125
88	Inhibiting efflorescence formation on fly ash–based geopolymer via silane surface modification. Cement and Concrete Composites, 2018, 94, 43-52.	4.6	122
89	Catalytic valorization of starch-rich food waste into hydroxymethylfurfural (HMF): Controlling relative kinetics for high productivity. Bioresource Technology, 2017, 237, 222-230.	4.8	121
90	Comparative studies on the effects of sewage sludge ash and fly ash on cement hydration and properties of cement mortars. Construction and Building Materials, 2017, 154, 791-803.	3.2	121

#	Article	IF	CITATIONS
91	Enhancing the performance of pre-cast concrete blocks by incorporating waste glass – ASR consideration. Cement and Concrete Composites, 2007, 29, 616-625.	4.6	119
92	Effect of carbonated recycled coarse aggregate on the dynamic compressive behavior of recycled aggregate concrete. Construction and Building Materials, 2017, 151, 52-62.	3.2	119
93	Statistical analysis of recycled aggregates derived from different sources for sub-base applications. Construction and Building Materials, 2012, 28, 129-138.	3.2	118
94	Heat of hydration of Portland high-calcium fly ash cement incorporating limestone powder: Effect of limestone particle size. Construction and Building Materials, 2014, 66, 410-417.	3.2	118
95	Effect of pulverized fuel ash and CO 2 curing on the water resistance of magnesium oxychloride cement (MOC). Cement and Concrete Research, 2017, 97, 115-122.	4.6	118
96	Research and application of pervious concrete as a sustainable pavement material: A state-of-the-art and state-of-the-practice review. Construction and Building Materials, 2018, 183, 544-553.	3.2	118
97	Extended theory of planned behaviour for promoting construction waste recycling in Hong Kong. Waste Management, 2019, 83, 161-170.	3.7	118
98	Characterization of interfacial transition zone in concrete prepared with carbonated modeled recycled concrete aggregates. Cement and Concrete Research, 2020, 136, 106175.	4.6	118
99	Effects of contaminants on the properties of concrete paving blocks prepared with recycled concrete aggregates. Construction and Building Materials, 2007, 21, 164-175.	3.2	117
100	Arsenic-containing soil from geogenic source in Hong Kong: Leaching characteristics and stabilization/solidification. Chemosphere, 2017, 182, 31-39.	4.2	117
101	Recycling contaminated wood into eco-friendly particleboard using green cement and carbon dioxide curing. Journal of Cleaner Production, 2016, 137, 861-870.	4.6	116
102	Enhancement of recycled aggregate properties by accelerated CO2 curing coupled with limewater soaking process. Cement and Concrete Composites, 2018, 89, 230-237.	4.6	116
103	Evaluation of environmental impact distribution methods for supplementary cementitious materials. Renewable and Sustainable Energy Reviews, 2018, 82, 597-608.	8.2	116
104	Phosphoric acid-activated wood biochar for catalytic conversion of starch-rich food waste into glucose and 5-hydroxymethylfurfural. Bioresource Technology, 2018, 267, 242-248.	4.8	114
105	Influence of PFA on cracking of concrete and cement paste after exposure to high temperatures. Cement and Concrete Research, 2003, 33, 2009-2016.	4.6	113
106	Carbonation treatment of recycled concrete aggregate: Effect on transport properties and steel corrosion of recycled aggregate concrete. Cement and Concrete Composites, 2019, 104, 103360.	4.6	113
107	Mechanical properties of 5-year-old concrete prepared with recycled aggregates obtained from three different sources. Magazine of Concrete Research, 2008, 60, 57-64.	0.9	111
108	Effects of limestone powder on CaCO3 precipitation in CO2 cured cement pastes. Cement and Concrete Composites, 2016, 72, 9-16.	4.6	111

#	Article	IF	CITATIONS
109	Mechanism for rapid hardening of cement pastes under coupled CO2-water curing regime. Cement and Concrete Composites, 2019, 97, 78-88.	4.6	111
110	Use of Furnace Bottom Ash for producing lightweight aggregate concrete with thermal insulation properties. Journal of Cleaner Production, 2015, 99, 94-100.	4.6	109
111	Materials characteristics affecting CO2 curing of concrete blocks containing recycled aggregates. Cement and Concrete Composites, 2016, 67, 50-59.	4.6	109
112	Recycling dredged sediment into fill materials, partition blocks, and paving blocks: Technical and economic assessment. Journal of Cleaner Production, 2018, 199, 69-76.	4.6	109
113	Accelerated carbonation of reactive MgO and Portland cement blends under flowing CO2 gas. Cement and Concrete Composites, 2020, 106, 103489.	4.6	108
114	Influence of recycled glass content and curing conditions on the properties of self-compacting concrete after exposure to elevated temperatures. Cement and Concrete Composites, 2012, 34, 265-272.	4.6	107
115	Development of a new generation of eco-friendly concrete blocks by accelerated mineral carbonation. Journal of Cleaner Production, 2016, 133, 1235-1241.	4.6	107
116	Value-added recycling of construction waste wood into noise and thermal insulating cement-bonded particleboards. Construction and Building Materials, 2016, 125, 316-325.	3.2	106
117	Designing out waste in high-rise residential buildings: Analysis of precasting methods and traditional construction. Renewable Energy, 2009, 34, 2067-2073.	4.3	105
118	Impact of Construction Waste Disposal Charging Scheme on work practices at construction sites in Hong Kong. Waste Management, 2013, 33, 138-146.	3.7	105
119	Residue strength, water absorption and pore size distributions of recycled aggregate concrete after exposure to elevated temperatures. Cement and Concrete Composites, 2014, 53, 73-82.	4.6	105
120	Properties of concrete blocks prepared with low grade recycled aggregates. Waste Management, 2009, 29, 2369-2377.	3.7	104
121	Compressive strength and microstructural properties of dry-mixed geopolymer pastes synthesized from GGBS and sewage sludge ash. Construction and Building Materials, 2018, 182, 597-607.	3.2	104
122	Utilizing recycled cathode ray tube funnel glass sand as river sand replacement in the high-density concrete. Journal of Cleaner Production, 2013, 51, 184-190.	4.6	102
123	Green remediation and recycling of contaminated sediment by waste-incorporated stabilization/solidification. Chemosphere, 2015, 122, 257-264.	4.2	102
124	Combined use of waste glass powder and cullet in architectural mortar. Cement and Concrete Composites, 2017, 82, 34-44.	4.6	102
125	Comparative environmental evaluation of construction waste management through different waste sorting systems in Hong Kong. Waste Management, 2017, 69, 325-335.	3.7	100
126	Valorization of cellulosic food waste into levulinic acid catalyzed by heterogeneous BrÃ,nsted acids: Temperature and solvent effects. Chemical Engineering Journal, 2017, 327, 328-335.	6.6	99

#	Article	IF	CITATIONS
127	Combined use of sewage sludge ash and recycled glass cullet for the production of concrete blocks. Journal of Cleaner Production, 2018, 171, 1447-1459.	4.6	99
128	Phosphorus recovery and leaching of trace elements from incinerated sewage sludge ash (ISSA). Chemosphere, 2018, 193, 278-287.	4.2	99
129	Influence of steam curing on the pore structures and mechanical properties of fly-ash high performance concrete prepared with recycled aggregates. Cement and Concrete Composites, 2016, 71, 77-84.	4.6	98
130	Valorization of food waste into hydroxymethylfurfural: Dual role of metal ions in successive conversion steps. Bioresource Technology, 2016, 219, 338-347.	4.8	98
131	Carbon dioxide sequestration of concrete slurry waste and its valorisation in construction products. Construction and Building Materials, 2016, 113, 664-672.	3.2	98
132	The effect of aggregate-to-cement ratio and types of aggregates on the properties of pre-cast concrete blocks. Cement and Concrete Composites, 2008, 30, 283-289.	4.6	97
133	Nano-TiO2-based architectural mortar for NO removal and bacteria inactivation: Influence of coating and weathering conditions. Cement and Concrete Composites, 2013, 36, 101-108.	4.6	97
134	Green remediation of contaminated sediment by stabilization/solidification with industrial by-products and CO2 utilization. Science of the Total Environment, 2018, 631-632, 1321-1327.	3.9	97
135	Properties of fly ash-modified cement mortar-aggregate interfaces. Cement and Concrete Research, 1999, 29, 1905-1913.	4.6	96
136	Effects of recycled fine glass aggregates on the properties of dry–mixed concrete blocks. Construction and Building Materials, 2013, 38, 638-643.	3.2	96
137	Fate of arsenic before and after chemical-enhanced washing of an arsenic-containing soil in Hong Kong. Science of the Total Environment, 2017, 599-600, 679-688.	3.9	96
138	Management and sustainable utilization of processing wastes from ready-mixed concrete plants in construction: A review. Resources, Conservation and Recycling, 2018, 136, 238-247.	5.3	94
139	Sulfonated biochar as acid catalyst for sugar hydrolysis and dehydration. Catalysis Today, 2018, 314, 52-61.	2.2	92
140	Recovery of phosphorus from incinerated sewage sludge ash by combined two-step extraction and selective precipitation. Chemical Engineering Journal, 2018, 348, 74-83.	6.6	92
141	Feasible use of recycled CRT funnel glass as heavyweight fine aggregate in barite concrete. Journal of Cleaner Production, 2012, 33, 42-49.	4.6	91
142	Self-cleaning ability of titanium dioxide clear paint coated architectural mortar and its potential in field application. Journal of Cleaner Production, 2016, 112, 3583-3588.	4.6	91
143	Utilizing high volumes quarry wastes in the production of lightweight foamed concrete. Construction and Building Materials, 2017, 151, 441-448.	3.2	91
144	The hindrance to using prefabrication in Hong Kong's building industry. Journal of Cleaner Production, 2018, 204, 70-81.	4.6	90

#	Article	IF	CITATIONS
145	Characterization of concrete properties from dielectric properties using ground penetrating radar. Cement and Concrete Research, 2009, 39, 687-695.	4.6	89
146	Innovative reuse of concrete slurry waste from ready-mixed concrete plants in construction products. Journal of Hazardous Materials, 2016, 312, 65-72.	6.5	89
147	Thermal induced stress and associated cracking in cement-based composite at elevated temperatures––Part I: Thermal cracking around single inclusion. Cement and Concrete Composites, 2004, 26, 99-111.	4.6	88
148	Photocatalytic NO x degradation of concrete surface layers intermixed and spray-coated with nano-TiO 2 : Influence of experimental factors. Cement and Concrete Composites, 2017, 83, 279-289.	4.6	88
149	Comparison of glass powder and pulverized fuel ash for improving the water resistance of magnesium oxychloride cement. Cement and Concrete Composites, 2018, 86, 98-109.	4.6	87
150	Comparative LCA of wood waste management strategies generated from building construction activities. Journal of Cleaner Production, 2018, 177, 387-397.	4.6	86
151	Selective Glucose Isomerization to Fructose via a Nitrogen-doped Solid Base Catalyst Derived from Spent Coffee Grounds. ACS Sustainable Chemistry and Engineering, 2018, 6, 16113-16120.	3.2	86
152	Slow pyrolysis of municipal solid waste (MSW): A review. Bioresource Technology, 2020, 312, 123615.	4.8	86
153	Effects of particle size of treated CRT funnel glass on properties of cement mortar. Materials and Structures/Materiaux Et Constructions, 2013, 46, 25-34.	1.3	85
154	Propylene carbonate and γ-valerolactone as green solvents enhance Sn(<scp>iv</scp>)-catalysed hydroxymethylfurfural (HMF) production from bread waste. Green Chemistry, 2018, 20, 2064-2074.	4.6	85
155	Global perspective on application of controlled low-strength material (CLSM) for trench backfilling – An overview. Construction and Building Materials, 2018, 158, 535-548.	3.2	85
156	Use of Mg/Ca modified biochars to take up phosphorus from acid-extract of incinerated sewage sludge ash (ISSA) for fertilizer application. Journal of Cleaner Production, 2020, 244, 118853.	4.6	85
157	Speciation, mobilization, and bioaccessibility of arsenic in geogenic soil profile from Hong Kong. Environmental Pollution, 2018, 232, 375-384.	3.7	83
158	Improvement in corrosion resistance of recycled aggregate concrete by nano silica suspension modification on recycled aggregates. Cement and Concrete Composites, 2020, 106, 103476.	4.6	83
159	Utilization of recycled cathode ray tubes glass in cement mortar for X-ray radiation-shielding applications. Journal of Hazardous Materials, 2012, 199-200, 321-327.	6.5	82
160	Mixture design and treatment methods for recycling contaminated sediment. Journal of Hazardous Materials, 2015, 283, 623-632.	6.5	82
161	Using incinerated sewage sludge ash to improve the water resistance of magnesium oxychloride cement (MOC). Construction and Building Materials, 2017, 147, 519-524.	3.2	82
162	Bacterial-induced mineralization (BIM) for soil solidification and heavy metal stabilization: A critical review. Science of the Total Environment, 2020, 746, 140967.	3.9	82

#	Article	IF	CITATIONS
163	A comparison of liquid-solid and gas-solid accelerated carbonation for enhancement of recycled concrete aggregate. Cement and Concrete Composites, 2021, 118, 103988.	4.6	82
164	Long-term shrinkage and mechanical properties of fully recycled aggregate concrete: Testing and modelling. Cement and Concrete Composites, 2022, 130, 104527.	4.6	81
165	Sustainable reclamation of phosphorus from incinerated sewage sludge ash as value-added struvite by chemical extraction, purification and crystallization. Journal of Cleaner Production, 2018, 181, 717-725.	4.6	80
166	Rate-dependent tensile properties of ultra-high performance engineered cementitious composites (UHP-ECC). Cement and Concrete Composites, 2018, 93, 218-234.	4.6	79
167	Feasibility study of using recycled fresh concrete waste as coarse aggregates in concrete. Construction and Building Materials, 2012, 28, 549-556.	3.2	77
168	Quantifying the Impact of Construction Waste Charging Scheme on Construction Waste Management in Hong Kong. Journal of Construction Engineering and Management - ASCE, 2013, 139, 466-479.	2.0	77
169	Upcycling wood waste into fibre-reinforced magnesium phosphate cement particleboards. Construction and Building Materials, 2018, 159, 54-63.	3.2	77
170	Effects of Fly Ash and Silica Fume on Interfacial Porosity of Concrete. Journal of Materials in Civil Engineering, 1999, 11, 197-205.	1.3	75
171	Using glass powder to improve the durability of architectural mortar prepared with glass aggregates. Materials and Design, 2017, 135, 102-111.	3.3	75
172	A novel type of controlled low strength material derived from alum sludge and green materials. Construction and Building Materials, 2018, 165, 792-800.	3.2	75
173	Effect of carbonation of modeled recycled coarse aggregate on the mechanical properties of modeled recycled aggregate concrete. Cement and Concrete Composites, 2018, 89, 169-180.	4.6	75
174	Sound insulation properties of rubberized lightweight aggregate concrete. Journal of Cleaner Production, 2018, 172, 3176-3185.	4.6	75
175	Transforming wood waste into water-resistant magnesia-phosphate cement particleboard modified by alumina and red mud. Journal of Cleaner Production, 2017, 168, 452-462.	4.6	74
176	An off-site snapshot methodology for estimating building construction waste composition - a case study of Hong Kong. Environmental Impact Assessment Review, 2019, 77, 128-135.	4.4	74
177	Production of lightweight concrete using incinerator bottom ash. Construction and Building Materials, 2008, 22, 473-480.	3.2	73
178	Innovative solidification/stabilization of lead contaminated soil using incineration sewage sludge ash. Chemosphere, 2017, 173, 143-152.	4.2	73
179	Fresh properties of cement pastes or mortars incorporating waste glass powder and cullet. Construction and Building Materials, 2017, 131, 793-799.	3.2	73
180	Recycling contaminated sediment into eco-friendly paving blocks by a combination of binary cement and carbon dioxide curing. Journal of Cleaner Production, 2017, 164, 1279-1288.	4.6	72

#	Article	IF	CITATIONS
181	Empirical modelling of CO2 uptake by recycled concrete aggregates under accelerated carbonation conditions. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	1.3	72
182	Use of CO2 curing to enhance the properties of cold bonded lightweight aggregates (CBLAs) produced with concrete slurry waste (CSW) and fine incineration bottom ash (IBA). Journal of Hazardous Materials, 2020, 381, 120951.	6.5	72
183	Polar aprotic solvent-water mixture as the medium for catalytic production of hydroxymethylfurfural (HMF) from bread waste. Bioresource Technology, 2017, 245, 456-462.	4.8	71
184	A maturity approach to estimate compressive strength development of CO 2 -cured concrete blocks. Cement and Concrete Composites, 2018, 85, 153-160.	4.6	71
185	Development of nano-silica treatment methods to enhance recycled aggregate concrete. Cement and Concrete Composites, 2021, 118, 103963.	4.6	70
186	Life-cycle cost-benefit analysis on sustainable food waste management: The case of Hong Kong International Airport. Journal of Cleaner Production, 2018, 187, 751-762.	4.6	69
187	Pozzolanic properties of reject fly ash in blended cement pastes. Cement and Concrete Research, 2003, 33, 1857-1865.	4.6	68
188	Effects of recycled glass on properties of architectural mortar before and after exposure to elevated temperatures. Journal of Cleaner Production, 2015, 101, 158-164.	4.6	68
189	Limitations and quality upgrading techniques for utilization of MSW incineration bottom ash in engineering applications – A review. Construction and Building Materials, 2018, 190, 1091-1102.	3.2	68
190	TiO2-based self-compacting glass mortar: Comparison of photocatalytic nitrogen oxide removal and bacteria inactivation. Building and Environment, 2012, 53, 1-6.	3.0	67
191	Influence of green solvent on levulinic acid production from lignocellulosic paper waste. Bioresource Technology, 2020, 298, 122544.	4.8	66
192	Production of lightweight aggregate ceramsite from red mud and municipal solid waste incineration bottom ash: Mechanism and optimization. Construction and Building Materials, 2021, 287, 122993.	3.2	66
193	Photocatalytic NO removal of concrete surface layers intermixed with TiO2. Building and Environment, 2013, 70, 102-109.	3.0	65
194	Influences of corrosion degree and corrosion morphology on the ductility of steel reinforcement. Construction and Building Materials, 2017, 148, 297-306.	3.2	65
195	Indoor Air Quality Investigation on Commercial Aircraft. Indoor Air, 1999, 9, 180-187.	2.0	63
196	Thermal induced stress and associated cracking in cement-based composite at elevated temperatures––Part II: thermal cracking around multiple inclusions. Cement and Concrete Composites, 2004, 26, 113-126.	4.6	63
197	Evaluation of environmental friendliness of concrete paving eco-blocks using LCA approach. International Journal of Life Cycle Assessment, 2016, 21, 70-84.	2.2	63
198	Development of social sustainability assessment method and a comparative case study on assessing recycled construction materials. International Journal of Life Cycle Assessment, 2018, 23, 1654-1674.	2.2	63

#	Article	IF	CITATIONS
199	Immobilization of hazardous municipal solid waste incineration fly ash by novel alternative binders derived from cementitious waste. Journal of Hazardous Materials, 2020, 393, 122386.	6.5	63
200	A novel polymer concrete made with recycled glass aggregates, fly ash and metakaolin. Construction and Building Materials, 2013, 41, 146-151.	3.2	62
201	Synthesis of low-temperature calcium sulfoaluminate-belite cements from industrial wastes and their hydration: Comparative studies between lignite fly ash and bottom ash. Cement and Concrete Composites, 2017, 83, 10-19.	4.6	62
202	Investigation into the stabilization/solidification performance of Portland cement through cement clinker phases. Journal of Hazardous Materials, 2007, 139, 238-243.	6.5	61
203	Mechanical, durability and environmental aspects of magnesium oxychloride cement boards incorporating waste wood. Journal of Cleaner Production, 2019, 207, 391-399.	4.6	61
204	Mechanisms of metal stabilization by cement based fixation processes. Science of the Total Environment, 1985, 41, 55-71.	3.9	60
205	MSWIBA-based cellular alkali-activated concrete incorporating waste glass powder. Cement and Concrete Composites, 2019, 95, 128-136.	4.6	60
206	Environmental and technical feasibility study of upcycling wood waste into cement-bonded particleboard. Construction and Building Materials, 2018, 173, 474-480.	3.2	59
207	A system dynamics approach to determine construction waste disposal charge in Hong Kong. Journal of Cleaner Production, 2019, 241, 118309.	4.6	59
208	Systematic evaluation of the effect of replacing river sand by different particle size ranges of fine recycled concrete aggregates (FRCA) in cement mortars. Construction and Building Materials, 2019, 209, 147-155.	3.2	59
209	Characteristics and metal leachability of incinerated sewage sludge ash and air pollution control residues from Hong Kong evaluated by different methods. Waste Management, 2017, 64, 161-170.	3.7	58
210	Valorization of starchy, cellulosic, and sugary food waste into hydroxymethylfurfural by one-pot catalysis. Chemosphere, 2017, 184, 1099-1107.	4.2	58
211	Minimizing demolition wastes in Hong Kong public housing projects. Construction Management and Economics, 2004, 22, 799-805.	1.8	57
212	Sustainable management and utilisation of concrete slurry waste: A case study in Hong Kong. Waste Management, 2017, 61, 397-404.	3.7	57
213	Novel cementitious materials produced from incinerator bottom ash. Resources, Conservation and Recycling, 2008, 52, 496-510.	5.3	56
214	Study on feasibility of reutilizing textile effluent sludge for producing concrete blocks. Journal of Cleaner Production, 2015, 101, 174-179.	4.6	56
215	Improvement of early-age properties for glass-cement mortar by adding nanosilica. Cement and Concrete Composites, 2018, 89, 18-30.	4.6	56
216	Influence of calcium ion in concrete pore solution on the passivation of galvanized steel bars. Cement and Concrete Research, 2018, 108, 46-58.	4.6	56

#	Article	IF	CITATIONS
217	Promoting food waste recycling in the commercial and industrial sector by extending the Theory of Planned Behaviour: A Hong Kong case study. Journal of Cleaner Production, 2018, 204, 1034-1043.	4.6	56
218	Valorization of concrete slurry waste (CSW) and fine incineration bottom ash (IBA) into cold bonded lightweight aggregates (CBLAs): Feasibility and influence of binder types. Journal of Hazardous Materials, 2019, 368, 689-697.	6.5	56
219	Rheology behavior of one-part alkali activated slag/glass powder (AASG) pastes. Construction and Building Materials, 2020, 258, 120381.	3.2	56
220	Valorization of lignocellulosic fibres of paper waste into levulinic acid using solid and aqueous BrÃ,nsted acid. Bioresource Technology, 2018, 247, 387-394.	4.8	55
221	Co-utilization of waste glass cullet and glass powder in precast concrete products. Construction and Building Materials, 2019, 223, 210-220.	3.2	55
222	Using microbial carbonate precipitation to improve the properties of recycled aggregate. Construction and Building Materials, 2019, 228, 116743.	3.2	55
223	Recycling incinerated sewage sludge ash (ISSA) as a cementitious binder by lime activation. Journal of Cleaner Production, 2020, 244, 118856.	4.6	55
224	Phase assemblance evolution during wet carbonation of recycled concrete fines. Cement and Concrete Research, 2022, 154, 106733.	4.6	55
225	Use of wastes derived from earthquakes for the production of concrete masonry partition wall blocks. Waste Management, 2011, 31, 1859-1866.	3.7	54
226	Removal of metallic Al and Al/Zn alloys in MSWI bottom ash by alkaline treatment. Journal of Hazardous Materials, 2018, 344, 73-80.	6.5	53
227	Synergetic recycling of waste glass and recycled aggregates in cement mortars: Physical, durability and microstructure performance. Cement and Concrete Composites, 2020, 113, 103632.	4.6	53
228	Numerical tests of thermal cracking induced by temperature gradient in cement-based composites under thermal loads. Cement and Concrete Composites, 2007, 29, 103-116.	4.6	52
229	Effects of nano-SiO2 and glass powder on mitigating alkali-silica reaction of cement glass mortars. Construction and Building Materials, 2019, 201, 295-302.	3.2	52
230	Properties of mortar prepared with recycled cathode ray tube funnel glass sand at different mineral admixture. Construction and Building Materials, 2013, 40, 951-960.	3.2	51
231	Structural Behaviour of Composite Members with Recycled Aggregate Concrete — An Overview. Advances in Structural Engineering, 2015, 18, 919-938.	1.2	51
232	Photocatalytic activities of titanium dioxide incorporated architectural mortars: Effects of weathering and activation light. Building and Environment, 2015, 94, 395-402.	3.0	51
233	Change in re-use value of incinerated sewage sludge ash due to chemical extraction of phosphorus. Waste Management, 2018, 74, 404-412.	3.7	51
234	Effects of low-alkalinity binders on stabilization/solidification of geogenic As-containing soils: Spectroscopic investigation and leaching tests. Science of the Total Environment, 2018, 631-632, 1486-1494.	3.9	51

#	Article	IF	CITATIONS
235	Sustainable reuse of waste glass and incinerated sewage sludge ash in insulating building products: Functional and durability assessment. Journal of Cleaner Production, 2019, 236, 117635.	4.6	51
236	Promoting effective construction and demolition waste management towards sustainable development: A case study of Hong Kong. Sustainable Development, 2020, 28, 1713-1724.	6.9	51
237	Properties of partition wall blocks prepared with fresh concrete wastes. Construction and Building Materials, 2012, 36, 566-571.	3.2	50
238	Feasible use of large volumes of GGBS in 100% recycled glass architectural mortar. Cement and Concrete Composites, 2014, 53, 350-356.	4.6	50
239	Recycling of incinerated sewage sludge ash and cathode ray tube funnel glass in cement mortars. Journal of Cleaner Production, 2017, 152, 142-149.	4.6	50
240	Feasibility of wet-extraction of phosphorus from incinerated sewage sludge ash (ISSA) for phosphate fertilizer production: A critical review. Critical Reviews in Environmental Science and Technology, 2021, 51, 939-971.	6.6	50
241	The limitation of the toxicity characteristic leaching procedure for evaluating cement-based stabilised/solidified waste forms. Waste Management, 1997, 17, 15-23.	3.7	49
242	Improving the performance of architectural mortar containing 100% recycled glass aggregates by using SCMs. Construction and Building Materials, 2017, 153, 975-985.	3.2	49
243	Effect of casting methods and SCMs on properties of mortars prepared with fine MSW incineration bottom ash. Construction and Building Materials, 2018, 167, 890-898.	3.2	49
244	Feasible use of municipal solid waste incineration bottom ash in ultra-high performance concrete. Cement and Concrete Composites, 2020, 114, 103814.	4.6	49
245	Effect of natural and recycled aggregate packing on properties of concrete blocks. Construction and Building Materials, 2021, 278, 122247.	3.2	49
246	Development and characteristics of ultra high-performance lightweight cementitious composites (UHP-LCCs). Cement and Concrete Research, 2021, 145, 106462.	4.6	49
247	Effects of flue gas desulphurization sludge on the pozzolanic reaction of reject-fly-ash-blended cement pastes. Cement and Concrete Research, 2004, 34, 1907-1918.	4.6	48
248	Assessment of in-situ alkali-silica reaction (ASR) development of glass aggregate concrete prepared with dry-mix and conventional wet-mix methods by X-ray computed micro-tomography. Cement and Concrete Composites, 2018, 90, 266-276.	4.6	48
249	Global warming potential and energy consumption of temporary works in building construction: A case study in Hong Kong. Building and Environment, 2018, 142, 171-179.	3.0	48
250	Investigation of cementitious properties of different constituents in municipal solid waste incineration bottom ash as supplementary cementitious materials. Journal of Cleaner Production, 2020, 258, 120675.	4.6	48
251	CO 2 curing and fibre reinforcement for green recycling of contaminated wood into high-performance cement-bonded particleboards. Journal of CO2 Utilization, 2017, 18, 107-116.	3.3	47
252	Sludge biochar as a green additive in cement-based composites: Mechanical properties and hydration kinetics. Construction and Building Materials, 2020, 262, 120723.	3.2	47

#	Article	IF	CITATIONS
253	The effect of nanoalumina on early hydration and mechanical properties of cement pastes. Construction and Building Materials, 2019, 202, 169-176.	3.2	46
254	Prediction of the bond strength between non-uniformly corroded steel reinforcement and deteriorated concrete. Construction and Building Materials, 2018, 187, 1267-1276.	3.2	45
255	Development of high performance lightweight concrete using ultra high performance cementitious composite and different lightweight aggregates. Cement and Concrete Composites, 2021, 124, 104277.	4.6	45
256	Effects of red mud on properties of self-compacting mortar. Journal of Cleaner Production, 2016, 135, 1170-1178.	4.6	44
257	Influence of chloride ion on depassivation of passive film on galvanized steel bars in concrete pore solution. Construction and Building Materials, 2018, 166, 572-580.	3.2	44
258	Sustainable stabilization/solidification of arsenic-containing soil by blast slag and cement blends. Chemosphere, 2021, 271, 129868.	4.2	44
259	Stress–strain behaviour of high-strength concrete at elevated temperatures. Magazine of Concrete Research, 2005, 57, 535-544.	0.9	43
260	Development of high-strength pervious concrete incorporated with high percentages of waste glass. Cement and Concrete Composites, 2020, 114, 103790.	4.6	43
261	Improvement in properties of concrete with modified RCA by microbial induced carbonate precipitation. Cement and Concrete Composites, 2021, 124, 104251.	4.6	43
262	Optimizing the use of recycled glass materials in alkali activated cement (AAC) based mortars. Journal of Cleaner Production, 2020, 255, 120228.	4.6	42
263	Comparison of lowâ€waste building technologies adopted in public and private housing projects in Hong Kong. Engineering, Construction and Architectural Management, 2003, 10, 88-98.	1.8	41
264	Investigation of cold bonded lightweight aggregates produced with incineration sewage sludge ash (ISSA) and cementitious waste. Journal of Cleaner Production, 2020, 251, 119709.	4.6	41
265	Synthesis of amorphous nano-silica from recycled concrete fines by two-step wet carbonation. Cement and Concrete Research, 2021, 147, 106526.	4.6	41
266	Influence of particle size of glass aggregates on the high temperature properties of dry-mix concrete blocks. Construction and Building Materials, 2019, 209, 522-531.	3.2	40
267	Enhancing the accelerated carbonation of recycled concrete aggregates by using reclaimed wastewater from concrete batching plants. Construction and Building Materials, 2020, 239, 117810.	3.2	40
268	Evaluating waste management alternatives by the multiple criteria approach. Resources, Conservation and Recycling, 1996, 17, 189-210.	5.3	39
269	Leaching and Microstructural Analysis of Cement-Based Solidified Wastes. Environmental Science & Technology, 2000, 34, 5038-5042.	4.6	39
270	Improvement of properties of architectural mortars prepared with 100% recycled glass by CO2 curing. Construction and Building Materials, 2018, 179, 138-150.	3.2	39

ARTICLE IF CITATIONS Efficiencies of carbonation and nano silica treatment methods in enhancing the performance of 271 3.2 recycled aggregate concrete. Construction and Building Materials, 2021, 308, 125080. Characterization of Flaws Embedded in Externally Bonded CFRP on Concrete Beams by Infrared 272 1.1 38 Thermography and Shearography. Journal of Nondestructive Evaluation, 2009, 28, 27-35. Development of a method for recycling of CRT funnel glass. Environmental Technology (United) Tj ETQq1 1 0.784314 rgBT /Qyerlock X-ray radiation shielding properties of cement mortars prepared with different types of aggregates. 274 1.3 38 Materials and Structures/Materiaux Et Constructions, 2013, 46, 1133-1141. Properties of partition wall blocks prepared with high percentages of recycled clay brick after exposure to elevated temperatures. Construction and Building Materials, 2013, 49, 56-61. 3.2 38 Methodology for upstream estimation of construction waste for new building projects. Journal of 276 38 4.6 Cleaner Production, 2019, 230, 1003-1012. Effect of seawater as mixing water on the hydration behaviour of tricalcium aluminate. Cement and Concrete Research, 2021, 149, 106565. 277 4.6 38 Evaluating the environmental impacts of stabilization and solidification technologies for managing hazardous wastes through life cycle assessment: A case study of Hong Kong. Environment 278 4.8 38 International, 2020, 145, 106139. Preparation aragonite whisker-rich materials by wet carbonation of cement: Towards yielding 279 micro-fiber reinforced cement and sequestrating CO2. Cement and Concrete Research, 2022, 159, 4.6 38 106891. Modelling design information to evaluate pre-fabricated and pre-cast design solutions for reducing 280 37 4.8 construction waste in high rise residential buildings. Automation in Construction, 2008, 17, 333-341. Sewage sludge ash: A comparative evaluation with fly ash for potential use as lime-pozzolan binders. 3.2 Construction and Building Materials, 2020, 242, 118160. A ternary optimization of alkali-activated cement mortars incorporating glass powder, slag and 282 3.2 37 calcium aluminate cement. Construction and Building Materials, 2020, 240, 117983. The attitudes of Guangzhou citizens on waste reduction and environmental issues. Resources, 5.3 36 Conservation and Recycling, 1999, 25, 35-59. Spent fluorescent lamp glass as a substitute for fine aggregate in cement mortar. Journal of Cleaner 284 4.6 36 Production, 2017, 161, 646-654. Pathways of conversion of nitrogen oxides by nano TiO2 incorporated in cement-based materials. 36 Building and Environment, 2018, 144, 412-418. Assessment of long-term reactivity of initially lowly-reactive solid wastes as supplementary 286 3.2 36 cementitious materials (SCMs). Construction and Building Materials, 2020, 232, 117192. A novel upcycling technique of recycled cement paste powder by a two-step carbonation process. 4.6 36 Journal of Cleaner Production, 2021, 290, 125192. Multi-scale investigation on mechanical behavior and microstructural alteration of C-S-H in 288 36 4.6 carbonated Alite paste. Cement and Concrete Research, 2021, 144, 106448.

#	Article	IF	CITATIONS
289	Early-age and microstructural properties of glass powder blended cement paste: Improvement by seawater. Cement and Concrete Composites, 2021, 122, 104165.	4.6	36
290	Efficiency and mechanism of nano-silica pre-spraying treatment in performance enhancement of recycled aggregate concrete. Construction and Building Materials, 2021, 301, 124093.	3.2	36
291	Recycling of waste glass powder as paste replacement in green UHPFRC. Construction and Building Materials, 2022, 316, 125719.	3.2	36
292	Waste reduction and recycling strategies for the in-flight services in the airline industry. Resources, Conservation and Recycling, 2003, 37, 87-99.	5.3	35
293	Dynamic compressive behavior of recycled aggregate concrete. Materials and Structures/Materiaux Et Constructions, 2016, 49, 4451-4462.	1.3	35
294	Mix design and performance of lightweight ultra high-performance concrete. Materials and Design, 2022, 216, 110553.	3.3	35
295	Characterisation of municipal solid waste and its recyclable contents of Guangzhou. Waste Management and Research, 2001, 19, 473-485.	2.2	34
296	Characterization of alkali-activated thermally treated incinerator bottom ash. Waste Management, 2008, 28, 1955-1962.	3.7	34
297	Effects of elevated water temperatures on interfacial delaminations, failure modes and shear strength in externally-bonded CFRP-concrete beams using infrared thermography, gray-scale images and direct shear test. Construction and Building Materials, 2009, 23, 3152-3160.	3.2	34
298	Superior photocatalytic NOx removal of cementitious materials prepared with white cement over ordinary Portland cement and the underlying mechanisms. Cement and Concrete Composites, 2018, 90, 42-49.	4.6	34
299	Recycling of incinerated sewage sludge ash as an adsorbent for heavy metals removal from aqueous solutions. Journal of Environmental Management, 2019, 247, 509-517.	3.8	34
300	Enhancement of recycled aggregates and concrete by combined treatment of spraying Ca2+ rich wastewater and flow-through carbonation. Construction and Building Materials, 2021, 277, 122202.	3.2	34
301	A comparative study on the properties of the mortar with the cathode ray tube funnel glass sand at different treatment methods. Construction and Building Materials, 2017, 148, 900-909.	3.2	33
302	The stabilization of sewage sludge by pulverized fuel ash and related materials. Environment International, 1996, 22, 705-710.	4.8	31
303	Influence of steam curing on hardened properties of recycled aggregate concrete. Magazine of Concrete Research, 2006, 58, 289-299.	0.9	31
304	Characterization of C–S–H formed in coupled CO2–water cured Portland cement pastes. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	1.3	31
305	Techno-environmental feasibility of wood waste derived fuel for cement production. Journal of Cleaner Production, 2019, 230, 663-671.	4.6	31
306	ASR expansion of alkali-activated cement glass aggregate mortars. Construction and Building Materials, 2020, 261, 119925.	3.2	31

#	Article	IF	CITATIONS
307	The mechanism of supplementary cementitious materials enhancing the water resistance of magnesium oxychloride cement (MOC): A comparison between pulverized fuel ash and incinerated sewage sludge ash. Cement and Concrete Composites, 2020, 109, 103562.	4.6	31
308	Novel recycling of incinerated sewage sludge ash (ISSA) and waste bentonite as ceramsite for Pb-containing wastewater treatment: Performance and mechanism. Journal of Environmental Management, 2021, 288, 112382.	3.8	31
309	Characterization of the deterioration of externally bonded CFRP-concrete composites using quantitative infrared thermography. Cement and Concrete Composites, 2010, 32, 740-746.	4.6	30
310	Using incinerated sewage sludge ash as a high-performance adsorbent for lead removal from aqueous solutions: Performances and mechanisms. Chemosphere, 2019, 226, 587-596.	4.2	30
311	Recycling sediment, calcium carbide slag and ground granulated blast-furnace slag into novel and sustainable cementitious binder for production of eco-friendly mortar. Construction and Building Materials, 2021, 305, 124772.	3.2	30
312	Utilization of municipal solid waste incineration bottom ash (IBA) aggregates in high-strength pervious concrete. Resources, Conservation and Recycling, 2021, 174, 105736.	5.3	30
313	The Attitudinal Differences in Source Separation and Waste Reduction between the General Public and the Housewives in Hong Kong. Journal of Environmental Management, 1996, 48, 215-227.	3.8	29
314	Transforming waterworks sludge into controlled low-strength material: Bench-scale optimization and field test validation. Journal of Environmental Management, 2019, 232, 254-263.	3.8	29
315	Influence of Seawater on the Morphological Evolution and the Microchemistry of Hydration Products of Tricalcium Silicates (C ₃ S). ACS Sustainable Chemistry and Engineering, 2020, 8, 15875-15887.	3.2	29
316	Effects of sodium/calcium cation exchange on the mechanical properties of calcium silicate hydrate (C-S-H). Construction and Building Materials, 2020, 243, 118283.	3.2	29
317	Hong Kong citizens' attitude towards waste recycling and waste minimization measures. Resources, Conservation and Recycling, 1994, 10, 377-400.	5.3	28
318	Sustainability analysis of pelletized bio-fuel derived from recycled wood product wastes in Hong Kong. Journal of Cleaner Production, 2016, 113, 400-410.	4.6	28
319	Fate of metals before and after chemical extraction of incinerated sewage sludge ash. Chemosphere, 2017, 186, 350-359.	4.2	28
320	Contrasting Roles of Maleic Acid in Controlling Kinetics and Selectivity of Sn(IV)- and Cr(III)-Catalyzed Hydroxymethylfurfural Synthesis. ACS Sustainable Chemistry and Engineering, 2018, 6, 14264-14274.	3.2	28
321	Organic Acid-Regulated Lewis Acidity for Selective Catalytic Hydroxymethylfurfural Production from Rice Waste: An Experimental–Computational Study. ACS Sustainable Chemistry and Engineering, 2019, 7, 1437-1446.	3.2	28
322	Improved photocatalytic nitrogen oxides removal using recycled glass-nano-TiO2 composites with NaOH pre-treatment. Journal of Cleaner Production, 2019, 209, 1095-1104.	4.6	28
323	Tuneable functionalities in layered double hydroxide catalysts for thermochemical conversion of biomass-derived glucose to fructose. Chemical Engineering Journal, 2020, 383, 122914.	6.6	28
324	Mechanistic study on initial passivation and surface chemistry of steel bars in nano-silica cement pastes. Cement and Concrete Composites, 2020, 112, 103661.	4.6	28

#	Article	IF	CITATIONS
325	High temperatures properties of barite concrete with cathode ray tube funnel glass. Fire and Materials, 2014, 38, 279-289.	0.9	27
326	Development of a Novel Binder Using Lime and Incinerated Sewage Sludge Ash to Stabilize and Solidify Contaminated Marine Sediments with High Water Content as a Fill Material. Journal of Materials in Civil Engineering, 2019, 31, .	1.3	27
327	Hybrid non-destructive evaluation methods for characterizing chloride-induced corrosion in concrete. NDT and E International, 2019, 107, 102123.	1.7	27
328	Rheological behaviour, mechanical performance, and NOx removal of photocatalytic mortar with combined clay brick sands-based and recycled glass-based nano-TiO2 composite photocatalysts. Construction and Building Materials, 2020, 240, 117698.	3.2	27
329	The effect of flow-through leaching on the diffusivity of heavy metals in stabilized/solidified wastes. Journal of Hazardous Materials, 2001, 81, 179-192.	6.5	26
330	Use of flue gas desulphurisation (FGD) waste and rejected fly ash in waste stabilization/solidification systems. Waste Management, 2006, 26, 141-149.	3.7	26
331	Use of CRT funnel glass in concrete blocks prepared with different aggregate-to-cement ratios. Green Materials, 2014, 2, 43-51.	1.1	26
332	Dynamic leaching behavior of geogenic As in soils after cement-based stabilization/solidification. Environmental Science and Pollution Research, 2017, 24, 27822-27832.	2.7	26
333	Mixture Design and Reaction Sequence for Recycling Construction Wood Waste into Rapid-Shaping Magnesia–Phosphate Cement Particleboard. Industrial & Engineering Chemistry Research, 2017, 56, 6645-6654.	1.8	26
334	Water resistance of magnesium oxychloride cement wood board with the incorporation of supplementary cementitious materials. Construction and Building Materials, 2020, 255, 119145.	3.2	26
335	Influence of the Quality of Recycled Aggregates on the Mechanical and Durability Properties of High Performance Concrete. Waste and Biomass Valorization, 2017, 8, 1421-1432.	1.8	25
336	Efficacy of green alternatives and carbon dioxide curing in reactive magnesia cement-bonded particleboards. Journal of Cleaner Production, 2020, 258, 120997.	4.6	25
337	Sewage sludge ash-incorporated stabilisation/solidification for recycling and remediation of marine sediments. Journal of Environmental Management, 2022, 301, 113877.	3.8	25
338	A comparison of waste management in Guangzhou and Hong Kong. Resources, Conservation and Recycling, 1998, 22, 203-216.	5.3	24
339	Thermal and residual mechanical profile of recycled aggregate concrete prepared with carbonated concrete aggregates after exposure to elevated temperatures. Fire and Materials, 2018, 42, 134-142.	0.9	24
340	Enhanced passivation of galvanized steel bars in nano-silica modified cement mortars. Cement and Concrete Composites, 2020, 111, 103626.	4.6	24
341	Strategies for Effective Waste Reduction and Management of Building Construction Projects in Highly Urbanized Cities—A Case Study of Hong Kong. Buildings, 2021, 11, 214.	1.4	24
342	Use of self-hardening slurry for trench cutoff wall: A review. Construction and Building Materials, 2021, 286, 122959.	3.2	24

#	Article	IF	CITATIONS
343	Optimization of gas-solid carbonation conditions of recycled aggregates using a linear weighted sum method. Developments in the Built Environment, 2021, 7, 100053.	2.0	24
344	MANAGEMENT AND RECYCLING OF DEMOLITION WASTE IN HONG KONG. Waste Management and Research, 1997, 15, 561-572.	2.2	23
345	Domestic waste management and recovery in Hong Kong. Journal of Material Cycles and Waste Management, 2009, 11, 104-109.	1.6	23
346	Comparing the use of sewage sludge ash and glass powder in cement mortars. Environmental Technology (United Kingdom), 2017, 38, 1390-1398.	1.2	23
347	Supercritical Carbon Dioxide Extraction of Value-Added Products and Thermochemical Synthesis of Platform Chemicals from Food Waste. ACS Sustainable Chemistry and Engineering, 2019, 7, 2821-2829.	3.2	23
348	Influences of chemical activators on incinerator bottom ash. Waste Management, 2009, 29, 544-549.	3.7	22
349	Validation of size estimation of debonds in external wall's composite finishes via passive Infrared thermography and a gradient algorithm. Construction and Building Materials, 2015, 87, 113-124.	3.2	22
350	Improving the high temperature mechanical properties of alkali activated cement (AAC) mortars using recycled glass as aggregates. Cement and Concrete Composites, 2020, 112, 103654.	4.6	22
351	Strategy for preventing explosive spalling and enhancing material efficiency of lightweight ultra high-performance concrete. Cement and Concrete Research, 2022, 158, 106842.	4.6	22
352	A Comparison of Waste Reduction Practices and the New Environmental Paradigm in Four Southern Chinese Areas. Environmental Management, 2000, 26, 195-206.	1.2	21
353	Application Framework for Mapping and Simulation of Waste Handling Processes in Construction. Journal of Construction Engineering and Management - ASCE, 2006, 132, 1212-1221.	2.0	21
354	Conceptual design and performance evaluation of high strength pervious concrete. Construction and Building Materials, 2021, 269, 121342.	3.2	21
355	Deterioration and Recovery of Metakaolin Blended Concrete Subjected to High Temperature. Fire Technology, 2003, 39, 35-45.	1.5	20
356	Properties of cementitious rendering mortar prepared with recycled fine aggregates. Journal Wuhan University of Technology, Materials Science Edition, 2010, 25, 1053-1056.	0.4	20
357	Effects of different kinds of recycled fine aggregate on properties of rendering mortar. Journal of Sustainable Cement-Based Materials, 2013, 2, 43-57.	1.7	20
358	Heat of hydration of cement pastes containing high-volume fly ash and silica fume. Journal of Thermal Analysis and Calorimetry, 2019, 138, 2065-2075.	2.0	20
359	Recycling hazardous textile effluent sludge in cement-based construction materials: Physicochemical interactions between sludge and cement. Journal of Hazardous Materials, 2020, 381, 121034.	6.5	20
360	Fast enhancement of recycled fine aggregates properties by wet carbonation. Journal of Cleaner Production, 2021, 313, 127867.	4.6	20

#	Article	IF	CITATIONS
361	Strength degradation of seawater-mixed alite pastes: an explanation from statistical nanoindentation perspective. Cement and Concrete Research, 2022, 152, 106669.	4.6	20
362	Stress–strain behaviour of fire exposed self ompacting glass concrete. Fire and Materials, 2013, 37, 297-310.	0.9	19
363	Versatile photocatalytic functions of self-compacting architectural glass mortars and their inter-relationship. Materials and Design, 2015, 88, 1260-1268.	3.3	19
364	Comparative evaluation of fire resistance of partition wall blocks prepared with waste materials. Journal of Cleaner Production, 2018, 182, 156-165.	4.6	19
365	Recycling of waste glass in construction materials. , 2019, , 153-167.		19
366	Use of thermally modified waste concrete powder for removal of Pb (II) from wastewater: Effects and mechanism. Environmental Pollution, 2021, 277, 116776.	3.7	19
367	Reaction mechanisms of alkali-activated glass powder-ggbs-CAC composites. Cement and Concrete Composites, 2021, 122, 104143.	4.6	19
368	Recycling of waste glass in cement mortars: Mechanical properties under high temperature loading. Resources, Conservation and Recycling, 2021, 174, 105831.	5.3	19
369	Mechanism of carbonating recycled concrete fines in aqueous environment: The particle size effect. Cement and Concrete Composites, 2022, 133, 104655.	4.6	19
370	Calcined oil sands fine tailings as a supplementary cementing material for concrete. Cement and Concrete Research, 2004, 34, 1235-1242.	4.6	18
371	A feasibility study on the utilization of r-FA in SCC. Cement and Concrete Research, 2004, 34, 2337-2339.	4.6	18
372	Fundamental behavior of recycled aggregate concrete – overview II: durability and enhancement. Magazine of Concrete Research, 2022, 74, 1011-1026.	0.9	18
373	A study of full-field debond behaviour and durability of CFRP-concrete composite beams by pulsed infrared thermography (IRT). NDT and E International, 2012, 52, 112-121.	1.7	17
374	A durability study of externally bonded FRP-concrete beams via full-field infrared thermography (IRT) and quasi-static shear test. Construction and Building Materials, 2013, 40, 481-491.	3.2	17
375	Characterization and optimization of a two-step carbonation process for valorization of recycled cement paste fine powder. Construction and Building Materials, 2021, 278, 122343.	3.2	17
376	Enzymatically induced phosphate precipitation (EIPP) for stabilization/solidification (S/S) treatment of heavy metal tailings. Construction and Building Materials, 2022, 314, 125577.	3.2	17
377	Using hazardous barium slag as a novel admixture for alkali activated slag cement. Cement and Concrete Composites, 2022, 125, 104332.	4.6	17
378	The effect of a modified method of lime-stabilisation sewage treatment on enteric pathogens. Environment International, 1998, 24, 783-788.	4.8	16

#	Article	IF	CITATIONS
379	Enhancing anti-microbial properties of wood-plastic composites produced from timber and plastic wastes. Environmental Science and Pollution Research, 2017, 24, 12227-12237.	2.7	16
380	Recycling of waste glass in dry-mixed concrete blocks: Evaluation of alkali-silica reaction (ASR) by accelerated laboratory tests and long-term field monitoring. Construction and Building Materials, 2020, 262, 120865.	3.2	16
381	Utilization of glass cullet to enhance the performance of recycled aggregate unbound sub-base. Journal of Cleaner Production, 2021, 288, 125083.	4.6	16
382	Comparative studies on passivation and corrosion behaviors of two types of steel bars in simulated concrete pore solution. Construction and Building Materials, 2021, 266, 120971.	3.2	16
383	Stress-strain behaviour of cement mortars containing recycled glass during and after exposure to elevated temperatures. Cement and Concrete Composites, 2021, 118, 103970.	4.6	16
384	Mechanisms on Accelerating Hydration of Alite Mixed with Inorganic Salts in Seawater and Characteristics of Hydration Products. ACS Sustainable Chemistry and Engineering, 2021, 9, 10479-10490.	3.2	16
385	Novel recycling of phosphorus-recovered incinerated sewage sludge ash residues by co-pyrolysis with lignin for reductive/sorptive removal of hexavalent chromium from aqueous solutions. Chemosphere, 2021, 285, 131434.	4.2	16
386	Fundamental behaviour of recycled aggregate concrete – overview I: strength and deformation. Magazine of Concrete Research, 2022, 74, 999-1010.	0.9	16
387	Simulation Approach to Evaluating Cost Efficiency of Selective Demolition Practices: Case of Hong Kong's Kai Tak Airport Demolition. Journal of Construction Engineering and Management - ASCE, 2009, 135, 448-457.	2.0	15
388	Using artificial neural networks to assess the applicability of recycled aggregate classification by different specifications. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	1.3	15
389	Distribution of ASR gel in conventional wet-mix glass mortars and mechanically produced dry-mix glass blocks. Construction and Building Materials, 2019, 229, 116916.	3.2	15
390	Upcycling of air pollution control residue waste into cementitious product through geopolymerization technology. Resources, Conservation and Recycling, 2022, 181, 106231.	5.3	15
391	Recovery systems in Guangzhou and Hong Kong. Resources, Conservation and Recycling, 1998, 23, 29-45.	5.3	14
392	Three-dimensional spatial variability of arsenic-containing soil from geogenic source in Hong Kong: Implications on sampling strategies. Science of the Total Environment, 2018, 633, 836-847.	3.9	14
393	Using Neural Networks to Determine the Significance of Aggregate Characteristics Affecting the Mechanical Properties of Recycled Aggregate Concrete. Applied Sciences (Switzerland), 2018, 8, 2171.	1.3	14
394	Dispersion of ultrasonic guided surface wave by honeycomb in early-aged concrete. NDT and E International, 2013, 57, 7-16.	1.7	13
395	Influence of Dust and Oil Accumulation on Effectiveness of Photocatalytic Concrete Surfaces. Journal of Environmental Engineering, ASCE, 2017, 143, 04017040.	0.7	13
396	Tailoring acidity and porosity of alumina catalysts via transition metal doping for glucose conversion in biorefinery. Science of the Total Environment, 2020, 704, 135414.	3.9	13

#	Article	IF	CITATIONS
397	Recycling of Glass Cullet and Glass Powder in Alkali-Activated Cement: Mechanical Properties and Alkali–Silica Reaction. Waste and Biomass Valorization, 2020, 11, 7159-7169.	1.8	13
398	Mechanical properties of colloidal calcium-silicate-hydrate gel with different gel-pore ionic solutions: A mesoscale study. Microporous and Mesoporous Materials, 2021, 316, 110944.	2.2	13
399	Arsenate(V) removal from aqueous system by using modified incinerated sewage sludge ash (ISSA) as a novel adsorbent. Chemosphere, 2021, 270, 129423.	4.2	13
400	Using MgO activated slag and calcium bentonite slurry to produce a novel vertical barrier material: Performances and mechanisms. Construction and Building Materials, 2021, 291, 123365.	3.2	13
401	Improving the bonding capacity of recycled concrete aggregate by creating a reactive shell with aqueous carbonation. Construction and Building Materials, 2022, 315, 125733.	3.2	13
402	Corrosion behavior of carbon steel in chloride-contaminated ultra-high-performance cement pastes. Cement and Concrete Composites, 2022, 128, 104443.	4.6	13
403	Immobilization and recycling of contaminated marine sediments in cement-based materials incorporating iron-biochar composites. Journal of Hazardous Materials, 2022, 435, 128971.	6.5	13
404	Advances in the use of recycled non-ferrous slag as a resource for non-ferrous metal mine site remediation. Environmental Research, 2022, 213, 113533.	3.7	13
405	Highly-efficient green photocatalytic cementitious materials with robust weathering resistance: From laboratory to application. Environmental Pollution, 2021, 273, 116510.	3.7	12
406	Engineering and microstructure properties of contaminated marine sediments solidified by high content of incinerated sewage sludge ash. Journal of Rock Mechanics and Geotechnical Engineering, 2020, , .	3.7	12
407	Modification of recycled aggregate by spraying colloidal nano silica and silica fume. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	1.3	12
408	Effect of the Ti-extracted residue on compressive strength and microstructural properties of modified cement mortar. Construction and Building Materials, 2022, 320, 126190.	3.2	12
409	Effects of seawater on UHPC: Macro and microstructure properties. Construction and Building Materials, 2022, 340, 127767.	3.2	12
410	Utilization of APC residues from sewage sludge incineration process as activator of alkali-activated slag/glass powder material. Cement and Concrete Composites, 2022, 133, 104680.	4.6	12
411	The feasibility of planting on stabilized sludge-amended soil. Environment International, 1999, 25, 465-477.	4.8	11
412	Stress–Strain Curve and Carbonation Resistance of Recycled Aggregate Concrete after Using Different RCA Treatment Techniques. Applied Sciences (Switzerland), 2021, 11, 4283.	1.3	11
413	A cross-region analysis of commercial food waste recycling behaviour. Chemosphere, 2021, 274, 129750.	4.2	11
414	Recycling of phosphogypsum and red mud in low carbon and green cementitious materials for vertical barrier. Science of the Total Environment, 2022, 838, 155925.	3.9	11

#	Article	IF	CITATIONS
415	Enhancing the resistance to microbial induced corrosion of alkali-activated glass powder/GGBS mortars by calcium aluminate cement. Construction and Building Materials, 2022, 341, 127912.	3.2	11
416	Internal curing effect of high volume furnace bottom ash (FBA) incorporation on lightweight aggregate concrete. Journal of Sustainable Cement-Based Materials, 2017, 6, 366-383.	1.7	10
417	Tracing and imaging minor water seepage of concealed PVC pipe in a reinforced concrete wall by high-frequency ground penetrating radar. Construction and Building Materials, 2017, 151, 840-847.	3.2	10
418	Influence of seawater on the mechanical and microstructural properties of lime-incineration sewage sludge ash pastes. Construction and Building Materials, 2021, 278, 122364.	3.2	10
419	Effect of NaCl and MgCl2 on the hydration of lime-pozzolan blend by recycling sewage sludge ash. Journal of Cleaner Production, 2021, 313, 127759.	4.6	10
420	Factors affecting the properties of recycled concrete by using neural networks. Computers and Concrete, 2014, 14, 547-561.	0.7	10
421	Transfer mechanisms of contaminants in cement-based stabilized/solidified wastes. Journal of Hazardous Materials, 2006, 129, 290-296.	6.5	9
422	Applications of Nondestructive Evaluation Techniques in Concrete Inspection. HKIE Transactions, 2012, 19, 34-41.	1.9	9
423	Comparison of the mechanically compacted dry-mix and ordinary vibrated wet-mix glass concretes after exposure to elevated temperatures. Cement and Concrete Composites, 2020, 114, 103720.	4.6	9
424	Alkaline modification of the acid residue of incinerated sewage sludge ash after phosphorus recovery for heavy metal removal from aqueous solutions. Waste Management, 2021, 123, 80-87.	3.7	9
425	Hydration, mechanical properties and microstructure of lime-pozzolana pastes by recycling waste sludge ash under marine environment. Journal of Cleaner Production, 2021, 310, 127441.	4.6	9
426	Immobilization of high-Pb contaminated soil by oxalic acid activated incinerated sewage sludge ash. Environmental Pollution, 2021, 284, 117120.	3.7	9
427	Accounting for the shortage of solid waste disposal facilities in Southern China. Environmental Conservation, 2001, 28, 99-103.	0.7	8
428	High temperature performance of wet-mix and dry-mix mortars prepared with different contents and size gradings of glass aggregates: Hot test and cold test. Cement and Concrete Composites, 2020, 108, 103548.	4.6	7
429	Mechanism of strength evolution of seawater OPC pastes. Advances in Structural Engineering, 2021, 24, 1256-1266.	1.2	7
430	Utilization of CO2 cured CSW-MSWIBA cold bonded aggregate into lightweight concrete products for masonry units. Construction and Building Materials, 2021, 276, 122203.	3.2	7
431	Characteristics and production of semi-dry lightweight concrete with cold bonded aggregates made from recycling concrete slurry waste (CSW) and municipal solid waste incineration bottom ash (MSWIBA). Journal of Building Engineering, 2022, 45, 103434.	1.6	7
432	Deep insight on mechanism and contribution of As(V) removal by thermal modification waste concrete powder. Science of the Total Environment, 2022, 807, 150764.	3.9	7

#	Article	IF	CITATIONS
433	FACTORS AFFECTING WASTE DISPOSAL FACILITIES SITING IN SOUTHERN CHINA. Journal of Environmental Assessment Policy and Management, 2002, 04, 241-262.	4.3	6
434	Spalling of concrete cover of fiber-reinforced polymer reinforced concrete under thermal loads. Materials and Structures/Materiaux Et Constructions, 2006, 39, 991-999.	1.3	6
435	Influence of a Superplasticizer on Initial Corrosion of Galvanized Steel Bars in Concrete Pore Solution. Journal of Materials in Civil Engineering, 2021, 33, .	1.3	6
436	Recycle of large amount cathode ray tube funnel glass sand to mortar with supplementary cementitious materials. Construction and Building Materials, 2021, 308, 124953.	3.2	6
437	GPR data analysis in time-frequency domain. , 2012, , .		5
438	Agronomic effectiveness of recovered phosphate fertilizer produced from incinerated sewage sludge ash. Waste Disposal & Sustainable Energy, 2022, 4, 157-167.	1.1	5
439	Precast architectural tiles produced by double-layer casting method. Cement and Concrete Composites, 2016, 66, 73-81.	4.6	4
440	Sequestration of carbon dioxide by RCAs and enhancement of properties of RAC by accelerated carbonation. , 2019, , 477-497.		4
441	Physicochemical investigation of Portland cement pastes prepared and cured with seawater. Materials and Structures/Materiaux Et Constructions, 2022, 55, .	1.3	4
442	Comparative studies of three methods for activating rejected fly ash. Advances in Cement Research, 2006, 18, 165-170.	0.7	3
443	An innovative way to enhance the high temperature properties of alkali activated cement mortars prepared by using glass powder as precursor. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	1.3	3
444	Design optimization and characterization of a green product by combined geopolymerization of sewage sludge ash with metakaolin. Applied Clay Science, 2021, 214, 106271.	2.6	3
445	Formalized Approach to Discretize a Continuous Plant in Construction Simulations. Journal of Construction Engineering and Management - ASCE, 2014, 140, .	2.0	2
446	Laboratory validation of corrosion-induced delamination in concrete by ground penetrating radar. , 2018, , .		1
447	Photocatalytic nano-mortars. , 2020, , 273-296.		1
448	Cement treatment of recycled concrete aggregates and incinerator bottom ash as road bases in pavements. , 2021, , 617-634.		1
449	Response to â€ ⁻ Comment on "Leaching and Microstructural Analysis of Cement-Based Solidified Wastesâ€. Environmental Science & Technology, 2001, 35, 4395-4395.	4.6	0
450	Integration of construction and traffic engineering in simulating pipe-jacking operations in urban areas. , 2011, , .		0

#	Article	IF	CITATIONS
451	WASCON 2018: No Cradle, No Grave—Circular Economy into Practice. Waste and Biomass Valorization, 2020, 11, 7053-7053.	1.8	Ο
452	Phosphorus (P)Ârecovery and reuse as fertilizer from incinerated sewage sludge ash (ISSA). , 2020, , 263-288.		0
453	Comprehensive environmental evaluation of photocatalytic eco-blocks produced with recycled materials. , 2021, , 567-582.		Ο
454	Effect of Seawater on the Hydration of Tricalcium Silicate. RILEM Bookseries, 2020, , 37-41.	0.2	0
455	Sustainable utilization of incinerated sewage sludge ash. , 2022, , 211-225.		Ο
456	Evaluating comprehensive carbon emissions of solidification/stabilization technologies: a case study. , 2022, , 517-530.		0