
Chunye Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/953224/publications.pdf Version: 2024-02-01

CHUNVE XIL

#	Article	IF	CITATIONS
1	Advanced functional polymer materials. Materials Chemistry Frontiers, 2020, 4, 1803-1915.	5.9	117
2	Electrochromic properties of vertically aligned Ni-doped WO ₃ nanostructure films and their application in complementary electrochromic devices. Journal of Materials Chemistry C, 2016, 4, 1613-1622.	5.5	110
3	Improved stability of electrochromic devices using Ti-doped V2O5 film. Electrochimica Acta, 2015, 166, 277-284.	5.2	94
4	Switchable window based on electrochromic polymers. Journal of Materials Research, 2004, 19, 2072-2080.	2.6	87
5	Enhanced electrochromic performances and cycle stability of NiO-based thin films via Li–Ti co-doping prepared by sol–gel method. Electrochimica Acta, 2015, 186, 182-191.	5.2	87
6	Flexible Pressure Sensor Based on a Poly(VDFâ€TrFE) Nanofiber Web. Macromolecular Materials and Engineering, 2013, 298, 541-546.	3.6	76
7	AIEE-Active and Electrochromic Bifunctional Polymer and a Device Composed thereof Synchronously Achieve Electrochemical Fluorescence Switching and Electrochromic Switching. ACS Applied Materials & Interfaces, 2015, 7, 27511-27517.	8.0	64
8	Novel electrochromic-fluorescent bi-functional devices based on aromatic viologen derivates. Electrochimica Acta, 2018, 285, 415-423.	5.2	63
9	Sensitivity of Pressure Sensors Enhanced by Doping Silver Nanowires. Sensors, 2014, 14, 9889-9899.	3.8	57
10	Wearable piezoelectric device assembled by one-step continuous electrospinning. Journal of Materials Chemistry C, 2016, 4, 6988-6995.	5.5	51
11	Electrochromism and electrochromic devices of new extended viologen derivatives with various substituent benzene. Solar Energy Materials and Solar Cells, 2020, 208, 110413.	6.2	48
12	A novel photoelectrochromic device based on poly(3,4-(2,2-dimethylpropylenedioxy)thiophene) thin film and dye-sensitized solar cell. Solar Energy Materials and Solar Cells, 2012, 97, 186-190.	6.2	45
13	A europium ion doped WO ₃ film with the bi-functionality of enhanced electrochromic switching and tunable red emission. Journal of Materials Chemistry C, 2017, 5, 3488-3494.	5.5	41
14	Cobalt ions doped tungsten oxide nanowires achieved vertically aligned nanostructure with enhanced electrochromic properties. Applied Surface Science, 2020, 501, 144003.	6.1	36
15	Solution-processable electrochromic red-to-transmissive polymers with tunable neutral state colors, high contrast and enhanced stability. Organic Electronics, 2015, 26, 129-136.	2.6	35
16	Deterioration mechanism of electrochromic poly(3,4-(2,2-dimethylpropylenedioxy)thiophene) thin films. Journal of Materials Chemistry C, 2016, 4, 4584-4591.	5.5	34
17	Enhanced electrochromic switches and tunable green fluorescence based on terbium ion doped WO ₃ films. Nanoscale, 2019, 11, 23049-23057.	5.6	34
18	Highly Regiosymmetric Homopolymer Based on Dioxythiophene for Realizing Water-Processable Blue-to-Transmissive Electrochrome. ACS Applied Materials & Interfaces, 2015, 7, 11387-11392.	8.0	33

Снимуе Хи

#	Article	IF	CITATIONS
19	Dynamically Cross-Linked Hydrogel Electrolyte with Remarkable Stretchability and Self-Healing Capability for Flexible Electrochromic Devices. ACS Applied Materials & Interfaces, 2021, 13, 56544-56553.	8.0	32
20	Electrochromic polymer achieving synchronous electrofluorochromic switching for optoelectronic application. Organic Electronics, 2017, 51, 295-303.	2.6	30
21	Effect of pH on the electrochromic and photoluminescent properties of Eu doped WO3 film. Electrochimica Acta, 2018, 278, 263-270.	5.2	30
22	Electrochromic kinetics of nanostructured poly(3,4-(2,2-dimethylpropylenedioxy)thiophene) film on plastic substrate. Organic Electronics, 2011, 12, 980-987.	2.6	29
23	Structural characterization and electrical and optical properties of V2O5 films prepared via ultrasonic spraying. Thin Solid Films, 2013, 534, 446-451.	1.8	29
24	A method to achieve full incorporation of PMMA-based gel electrolyte in fiber-structured PVB for solid-state electrochromic device fabrication. Electrochimica Acta, 2020, 354, 136702.	5.2	28
25	Heteroatom-Doped Nickel Oxide Hybrids Derived from Metal–Organic Frameworks Based on Novel Schiff Base Ligands toward High-Performance Electrochromism. ACS Applied Materials & Interfaces, 2021, 13, 4133-4145.	8.0	28
26	Special topic on recent progress in electrochromism. Science China Chemistry, 2017, 60, 1-2.	8.2	27
27	Electrofluorochromic and electrochromic bifunctional polymers with dual-state emission via introducing multiple C—H··Ĩ€ bonds. Organic Electronics, 2018, 62, 481-490.	2.6	26
28	Highly Optical Performance Photoelectrochromic Device Based on Brâ^'/Br3â^' Electrolyte. Electrochimica Acta, 2016, 191, 902-907.	5.2	24
29	Self-polarized piezoelectric thin films: preparation, formation mechanism and application. Journal of Materials Chemistry C, 2015, 3, 8926-8931.	5.5	23
30	High-performance complementary electrochromic device based on surface-confined tungsten oxide and solution-phase N-methyl-phenothiazine with full spectrum absorption. Journal of Materials Science, 2017, 52, 86-95.	3.7	23
31	Spray-processable red-to-transmissive electrochromic polymers towards fast switching time for display applications. New Journal of Chemistry, 2015, 39, 5389-5394.	2.8	22
32	Facile Fabrication of Micro-Nano Structured Triboelectric Nanogenerator with High Electric Output. Nanoscale Research Letters, 2015, 10, 1001.	5.7	21
33	Black-to-transmissive electrochromic switching polymer films via solution co-processing. New Journal of Chemistry, 2016, 40, 5231-5237.	2.8	20
34	Solution-processable thiophene-based electrochromic polymers bearing trifluoromethyl rather than long side chains. Organic Electronics, 2016, 37, 169-177.	2.6	19
35	Electrochromism of substituted phthalate derivatives and outstanding performance of corresponding multicolor electrochromic devices. Electrochimica Acta, 2020, 341, 136023.	5.2	19
36	Flexible Piezoresistive Pressure Sensor Based on Electrospun Rough Polyurethane Nanofibers Film for Human Motion Monitoring. Nanomaterials, 2022, 12, 723.	4.1	19

Снимуе Хи

#	Article	IF	CITATIONS
37	<title>Enhanced contrast ratios and rapid-switching color-changeable devices based on poly(3,4-propylenedioxythiophene) derivative and counterelectrode</title> . , 2002, 4695, 442.		18
38	High contrast photoelectrochromic device with CdS quantum dot sensitized photoanode. New Journal of Chemistry, 2017, 41, 579-587.	2.8	18
39	Trifunctional CdSe quantum dots-polymer composite film with electrochromic, electrofluorescent and light-induced coloration effects. Solar Energy Materials and Solar Cells, 2018, 177, 82-88.	6.2	18
40	Robust non-complementary electrochromic device based on WO3 film and CoS catalytic counter electrode with TMTU/TMFDS2+ redox couple. Chemical Engineering Journal, 2021, 426, 131314.	12.7	18
41	A novel dielectric elastomer actuator based on compliant polyvinyl alcohol hydrogel electrodes. Journal of Materials Science: Materials in Electronics, 2015, 26, 9213-9218.	2.2	17
42	A newly-designed self-powered electrochromic window. Science China Chemistry, 2017, 60, 84-89.	8.2	17
43	A multifunctional triphenylamine schiff-base compound with novel self-assembly morphology transitions. Dyes and Pigments, 2019, 170, 107649.	3.7	17
44	Highly transparent photoelectrochromic device based on carbon quantum dots sensitized photoanode. Solar Energy Materials and Solar Cells, 2019, 193, 372-378.	6.2	17
45	CdS modified TiO ₂ films showing multicolor switching and enhanced optical contrast. Journal of Materials Chemistry C, 2016, 4, 9085-9093.	5.5	16
46	A high performance ZnO based photoelectrochemical cell type UV photodetector with [Co(bpy) ₃] ^{3+/2+} electrolyte and PEDOT/ITO counter electrode. RSC Advances, 2017, 7, 18987-18992.	3.6	16
47	Electrocatalytic PProDOT–Me2 counter electrode for a Br⒒/Br3⒒ redox couple in a WO3-based electrochromic device. Electrochemistry Communications, 2020, 111, 106646.	4.7	16
48	Yellow electrochromic polymer materials with fine tuning electrofluorescences by adjusting steric hindrance of side chains. RSC Advances, 2017, 7, 25444-25449.	3.6	14
49	An inner-electropolymerization method for preparing electrochromic devices with various shapes and a large size. Journal of Materials Chemistry C, 2019, 7, 7520-7524.	5.5	12
50	A Transparent to Opaque Electrochromic Device Using Reversible Ag Deposition on PProDOTâ€Me ₂ with Robust Stability. Advanced Optical Materials, 2021, 9, 2002149.	7.3	12
51	Flexible piezoelectric device directly assembled through the continuous electrospinning method. Smart Materials and Structures, 2021, 30, 045006.	3.5	11
52	Photoelectrochromic devices based on cobalt complex electrolytes. RSC Advances, 2016, 6, 81680-81684.	3.6	8
53	A new strategy to fabricate multicolor electrochromic device with UV-detecting performance based on TiO2 and PProDOT-Me2. Organic Electronics, 2019, 65, 8-14.	2.6	8
54	Simply preparation of self-poled PVDF/nanoceria nanocomposite through one-step formation approach. Polymer Bulletin, 2021, 78, 5547-5566.	3.3	7

Снимуе Хи

#	Article	IF	CITATIONS
55	Rapid switching of a Pt-free photovoltachromic device based on WO3 using PProDOT-Me2 catalyst. Solar Energy, 2022, 232, 139-145.	6.1	6
56	Boosting light harvesting and charge separation of WO ₃ <i>via</i> coupling with Cu ₂ O/CuO towards highly efficient tandem photoanodes. RSC Advances, 2021, 11, 13513-13520.	3.6	5
57	Partly Covered PProDOTâ€Me 2 on MoS 2 Nanosheets Counter Electrode for Highâ€Performance Selfâ€Powered Electrochromic Device. Advanced Materials Interfaces, 0, , 2100945.	3.7	5
58	Versatile Photo/Electricity Responsive Properties of a Coordination Polymer Based on Extended Viologen Ligands. Membranes, 2022, 12, 277.	3.0	5
59	Characteristics of several kinds of polyethylene gel estimated by smallâ€angle light scattering under cross polarization. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 384-397.	2.1	4
60	Note: Microelectrode-shielding tip for scanning probe electron energy spectroscopy. Review of Scientific Instruments, 2018, 89, 046102.	1.3	2
61	Distinct Properties of Nanofibrous Amorphous Ice. Materials, 2014, 7, 7653-7661.	2.9	1
62	Preparation of ice nanofibers with electrospray. Materials Letters, 2014, 133, 115-118.	2.6	1
63	Partly Covered PProDOTâ€Me ₂ on MoS ₂ Nanosheets Counter Electrode for Highâ€Performance Selfâ€Powered Electrochromic Device (Adv. Mater. Interfaces 1/2022). Advanced Materials Interfaces, 2022, 9, .	3.7	0