Michele Casini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9531982/publications.pdf Version: 2024-02-01

		117571	114418
97	4,462 citations	34	63
papers	citations	h-index	g-index
111	111	111	4638
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Population structure of European sprat (Sprattus sprattus) in the Greater North Sea ecoregion revealed by otolith shape analysis. Fisheries Research, 2022, 245, 106131.	0.9	5
2	Is Diversity the Missing Link in Coastal Fisheries Management?. Diversity, 2022, 14, 90.	0.7	4
3	New perspectives on Eastern Baltic cod movement patterns from historical and contemporary tagging data. Marine Ecology - Progress Series, 2022, 689, 109-126.	0.9	5
4	Which factors can affect the productivity and dynamics of cod stocks in the Baltic Sea, Kattegat and Skagerrak?. Ocean and Coastal Management, 2022, 223, 106154.	2.0	7
5	Examining fish movement in terms of advection or diffusion: a case study of northeastern Atlantic cod. Marine Ecology - Progress Series, 2022, 691, 115-129.	0.9	1
6	Short-term tagging mortality of Baltic cod (Gadus morhua). Fisheries Research, 2021, 234, 105804.	0.9	1
7	Changes in population depth distribution and oxygen stratification are involved in the current low condition of the eastern Baltic Sea cod (<i>Gadus morhua</i>). Biogeosciences, 2021, 18, 1321-1331.	1.3	14
8	lt's elemental, my dear Watson: validating seasonal patterns in otolith chemical chronologies. Canadian Journal of Fisheries and Aquatic Sciences, 2021, 78, 551-566.	0.7	9
9	Multidecadal changes in fish growth rates estimated from tagging data: A case study from the Eastern Baltic cod (<i>Gadus morhua, Gadidae</i>). Fish and Fisheries, 2021, 22, 413-427.	2.7	20
10	Eaten by a cormorant: Unexpected return of a tagged Baltic cod. , 2021, , .		1
11	Linking consumer physiological status to food-web structure and prey food value in the Baltic Sea. Ambio, 2020, 49, 391-406.	2.8	18
12	Deficiency syndromes in top predators associated with large-scale changes in the Baltic Sea ecosystem. PLoS ONE, 2020, 15, e0227714.	1.1	13
13	Feeding and growth of Atlantic cod (Gadus morhua L.) in the eastern Baltic Sea under environmental change. ICES Journal of Marine Science, 2020, 77, 624-632.	1.2	55
14	Historical growth of Eastern Baltic cod (Gadus morhua): Setting a baseline with international tagging data. Fisheries Research, 2020, 223, 105442.	0.9	11
15	Regional and stock-specific differences in contemporary growth of Baltic cod revealed through tag-recapture data. ICES Journal of Marine Science, 2020, 77, 2078-2088.	1.2	9
16	Reply to "Reduced growth in Baltic Sea cod may be due to mild hypoxiaâ€â€"a comment to Neuenfeldt et al. (2020). ICES Journal of Marine Science, 2020, 77, 2006-2008.	1.2	1
17	Long-term changes in spatial overlap between interacting cod and flounder in the Baltic Sea. Hydrobiologia, 2020, 847, 2541-2553.	1.0	9
18	Analyses of structural changes in ecological time series (ASCETS). Ecological Indicators, 2020, 116, 106469.	2.6	7

#	Article	IF	CITATIONS
19	Seeking the true time: Exploring otolith chemistry as an ageâ€determination tool. Journal of Fish Biology, 2020, 97, 552-565.	0.7	30
20	Feeding and growth of Atlantic cod (Gadus morhua L.) in the eastern Baltic Sea under environmental change. ICES Journal of Marine Science, 2020, 77, 858-858.	1.2	2
21	Diet of dominant demersal fish species in the Baltic Sea: Is flounder stealing benthic food from cod?. Marine Ecology - Progress Series, 2020, 645, 159-170.	0.9	15
22	Ecological adaptation in Atlantic herring is associated with large shifts in allele frequencies at hundreds of loci. ELife, 2020, 9, .	2.8	51
23	Ecologically Sustainable Exploitation Rates—A multispecies approach for fisheries management. Fish and Fisheries, 2019, 20, 952-961.	2.7	2
24	Modeling vitamin B1 transfer to consumers in the aquatic food web. Scientific Reports, 2019, 9, 10045.	1.6	23
25	Spatial contraction of demersal fish populations in a large marine ecosystem. Journal of Biogeography, 2019, 46, 633-645.	1.4	30
26	Trophic Interactions, Management Trade-Offs and Climate Change: The Need for Adaptive Thresholds to Operationalize Ecosystem Indicators. Frontiers in Marine Science, 2019, 6, .	1.2	9
27	The first large-scale assessment of three-spined stickleback (Gasterosteus aculeatus) biomass and spatial distribution in the Baltic Sea. ICES Journal of Marine Science, 2019, 76, 1653-1665.	1.2	23
28	Spatio-temporal dynamics and behavioural ecology of a "demersal―fish population as detected using research survey pelagic trawl catches: the Eastern Baltic Sea cod (Gadus morhua). ICES Journal of Marine Science, 2019, 76, 1591-1600.	1.2	6
29	Effects of freezing on length and mass measurements of Atlantic cod Gadus morhua in the Baltic Sea. Journal of Fish Biology, 2019, 95, 1486-1495.	0.7	3
30	Otolith chemistry indicates recent worsened Baltic cod condition is linked to hypoxia exposure. Biology Letters, 2019, 15, 20190352.	1.0	40
31	Spatio-temporal dynamics and behavioural ecology of a "demersal―fish population as detected using research survey pelagic trawl catches: the Eastern Baltic Sea cod (Gadus morhua). ICES Journal of Marine Science, 2019, 76, 1931-1931.	1.2	1
32	Predator-prey body size relationships of cod in a low-diversity marine system. Marine Ecology - Progress Series, 2019, 627, 201-206.	0.9	4
33	Effect of fish length and nutritional condition on the fecundity of distressed Atlantic cod <scp><i>Gadus morhua</i></scp> from the Baltic Sea. Journal of Fish Biology, 2018, 92, 1016-1034.	0.7	30
34	Reducing eutrophication increases spatial extent of communities supporting commercial fisheries: a model case study. ICES Journal of Marine Science, 2018, 75, 1306-1317.	1.2	36
35	Sizeâ€dependent prey availability affects diet and performance of predatory fish at sea: a case study of Atlantic salmon. Ecosphere, 2018, 9, e02081.	1.0	21
36	A quantitative framework for selecting and validating food web indicators. Ecological Indicators, 2018, 84, 619-631.	2.6	53

#	Article	IF	CITATIONS
37	Effect of Marine Hypoxia on Baltic Sea Cod Gadus morhua: Evidence From Otolith Chemical Proxies. Frontiers in Marine Science, 2018, 5, .	1.2	48
38	A three-dimensional view on biodiversity changes: spatial, temporal, and functional perspectives on fish communities in the Baltic Sea. ICES Journal of Marine Science, 2018, 75, 2463-2475.	1.2	7
39	The Baltic Sea as a time machine for the future coastal ocean. Science Advances, 2018, 4, eaar8195.	4.7	339
40	Food-web indicators accounting for species interactions respond to multiple pressures. Ecological Indicators, 2017, 77, 67-79.	2.6	14
41	Modelling indices of abundance and size-based indicators of cod and flounder stocks in the Baltic Sea using newly standardized trawl survey data. ICES Journal of Marine Science, 2017, 74, 1322-1333.	1.2	26
42	Seasonal dynamics in the diet of pelagic fish species in the southwest Baltic Proper. ICES Journal of Marine Science, 2017, 74, 750-758.	1.2	15
43	Metapopulation theory identifies biogeographical patterns among core and satellite marine bacteria scaling from tens to thousands of kilometers. Environmental Microbiology, 2017, 19, 1222-1236.	1.8	38
44	Characterizing and predicting the distribution of Baltic Sea flounder (Platichthys flesus) during the spawning season. Journal of Sea Research, 2017, 126, 46-55.	0.6	11
45	Nash equilibrium can resolve conflicting maximum sustainable yields in multi-species fisheries management. ICES Journal of Marine Science, 2017, 74, 78-90.	1.2	12
46	Moderate nucleotide diversity in the Atlantic herring is associated with a low mutation rate. ELife, 2017, 6, .	2.8	63
47	Spatio-temporal dynamics of a fish predator: Density-dependent and hydrographic effects on Baltic Sea cod population. PLoS ONE, 2017, 12, e0172004.	1.1	22
48	Hypoxic areas, density-dependence and food limitation drive the body condition of a heavily exploited marine fish predator. Royal Society Open Science, 2016, 3, 160416.	1.1	110
49	The genetic basis for ecological adaptation of the Atlantic herring revealed by genome sequencing. ELife, 2016, 5, .	2.8	143
50	Unscrambling Cyanobacteria Community Dynamics Related to Environmental Factors. Frontiers in Microbiology, 2016, 7, 625.	1.5	71
51	Local Environmental Conditions Shape Generalist But Not Specialist Components of Microbial Metacommunities in the Baltic Sea. Frontiers in Microbiology, 2016, 07, 2078.	1.5	44
52	Using alternative biological information in stock assessment: condition-corrected natural mortality of Eastern Baltic cod. ICES Journal of Marine Science, 2016, 73, 2625-2631.	1.2	30
53	Fishing, reproductive volume and regulation: population dynamics and exploitation of the eastern Baltic cod. Population Ecology, 2016, 58, 199-211.	0.7	5
54	A centurial development of the North Sea fish megafauna as reflected by the historical Swedish longlining fisheries. Fish and Fisheries, 2015, 16, 522-533.	2.7	15

#	Article	IF	CITATIONS
55	Growth and maturity of sprat (Sprattus sprattus) in the Kattegat and Skagerrak, eastern North Sea. Aquatic Living Resources, 2015, 28, 127-137.	0.5	3
56	Climate and fishing steer ecosystem regeneration to uncertain economic futures. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142809.	1.2	52
57	Stickleback increase in the Baltic Sea – A thorny issue for coastal predatory fish. Estuarine, Coastal and Shelf Science, 2015, 163, 134-142.	0.9	78
58	Eastern Baltic cod in distress: biological changes and challenges for stock assessment. ICES Journal of Marine Science, 2015, 72, 2180-2186.	1.2	129
59	Regime shifts in exploited marine food webs: detecting mechanisms underlying alternative stable states using size-structured community dynamics theory. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130262.	1.8	66
60	The importance of within-system spatial variation in drivers of marine ecosystem regime shifts. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130271.	1.8	18
61	A holistic view of marine regime shifts. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130279.	1.8	131
62	Density-Dependence in Space and Time: Opposite Synchronous Variations in Population Distribution and Body Condition in the Baltic Sea Sprat (Sprattus sprattus) over Three Decades. PLoS ONE, 2014, 9, e92278.	1.1	22
63	A metacommunity perspective on source–sink dynamics and management: the Baltic Sea as a case study. Ecological Applications, 2014, 24, 1820-1832.	1.8	29
64	Forecasting fish stock dynamics under climate change: <scp>B</scp> altic herring (<i>Clupea) Tj ETQq0 0 0 rgBT</i>	Overlock	10 Tf 50 382
65	The community structure of over-wintering larval and small juvenile fish in a large estuary. Estuarine, Coastal and Shelf Science, 2014, 139, 27-39.	0.9	10
66	Implementing ecosystem-based fisheries management: from single-species to integrated ecosystem assessment and advice for Baltic Sea fish stocks. ICES Journal of Marine Science, 2014, 71, 1187-1197.	1.2	92
67	CPUE trends of Hilsa kelee and Thryssa vitrirostris exploited by the artisanal finfish fisheries in Mozambique derived from an on-shore sampling of catches by trip. Scientia Marina, 2014, 78, 55-64.	0.3	5
68	Predators with Multiple Ontogenetic Niche Shifts Have Limited Potential for Population Growth and Top-Down Control of Their Prey. American Naturalist, 2013, 182, 53-66.	1.0	33
69	Cohort Dynamics Give Rise to Alternative Stable Community States. American Naturalist, 2013, 182, 374-392.	1.0	11
70	The thiamine deficiency syndrome M74, a reproductive disorder of Atlantic salmon (Salmo salar) feeding in the Baltic Sea, is related to the fat and thiamine content of prey fish. ICES Journal of Marine Science, 2012, 69, 516-528.	1.2	51
71	Predator transitory spillover induces trophic cascades in ecological sinks. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8185-8189.	3.3	98
72	Spatial management of marine resources can enhance the recovery of predators and avoid local depletion of forage fish. Conservation Letters, 2012, 5, 486-492.	2.8	86

#	Article	IF	CITATIONS
73	Historical spatiotemporal dynamics of eastern North Sea cod. Canadian Journal of Fisheries and Aquatic Sciences, 2012, 69, 833-841.	0.7	24
74	Spatial and temporal depletion of haddock and pollack during the last century in the Kattegat-Skagerrak. Journal of Applied Ichthyology, 2012, 28, 200-208.	0.3	19
75	Climate variability drives anchovies and sardines into the North and Baltic Seas. Progress in Oceanography, 2012, 96, 128-139.	1.5	100
76	Spatial and temporal density dependence regulates the condition of central Baltic Sea clupeids: compelling evidence using an extensive international acoustic survey. Population Ecology, 2011, 53, 511-523.	0.7	84
77	Effects of Altered Offshore Food Webs on Coastal Ecosystems Emphasize the Need for Cross-Ecosystem Management. Ambio, 2011, 40, 786-797.	2.8	100
78	Relationships between fish stock changes in the Baltic Sea and the M74 syndrome, a reproductive disorder of Atlantic salmon (Salmo salar). ICES Journal of Marine Science, 2011, 68, 2134-2144.	1.2	31
79	Beauty is in the eye of the beholder: management of Baltic cod stock requires an ecosystem approach. Marine Ecology - Progress Series, 2011, 431, 293-297.	0.9	12
80	Making the ecosystem approach operational—Can regime shifts in ecological- and governance systems facilitate the transition?. Marine Policy, 2010, 34, 1290-1299.	1.5	99
81	Recruitment failure of coastal predatory fish in the Baltic Sea coincident with an offshore ecosystem regime shift. ICES Journal of Marine Science, 2010, 67, 1587-1595.	1.2	125
82	Linking fisheries, trophic interactions and climate: threshold dynamics drive herring Clupea harengus growth in the central Baltic Sea. Marine Ecology - Progress Series, 2010, 413, 241-252.	0.9	81
83	Trophic cascades promote threshold-like shifts in pelagic marine ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 197-202.	3.3	339
84	Conservation value of historical data: reconstructing stock dynamics of turbot during the last century in the Kattegat-Skagerrak. Marine Ecology - Progress Series, 2009, 386, 197-206.	0.9	29
85	Spatial variation in growth, condition and maturation reaction norms of the Baltic herring Clupea harengus membras. Marine Ecology - Progress Series, 2009, 383, 285-294.	0.9	16
86	Effect of environmental variability and spawner characteristics on the recruitment of Baltic herring Clupea harengus populations. Marine Ecology - Progress Series, 2009, 388, 221-234.	0.9	47
87	The spatial distribution of cod (Gadus morhua L.) spawning grounds in the Kattegat, eastern North Sea. Fisheries Research, 2008, 90, 36-44.	0.9	34
88	Multi-level trophic cascades in a heavily exploited open marine ecosystem. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1793-1801.	1.2	262
89	The influence of the Atlantic and regional climate variability on the longâ€ŧerm changes in gelatinous carnivore populations in the northwestern Mediterranean. Limnology and Oceanography, 2008, 53, 1456-1467.	1.6	49
90	Inter-annual variation in herring,Clupea harengus, and sprat,Sprattus sprattus, condition in the central Baltic Sea: what gives the tune?. Oikos, 2006, 112, 638-650.	1.2	109

#	Article	IF	CITATIONS
91	Fish, seabirds and trophic cascades in the Baltic Sea. Marine Ecology - Progress Series, 2006, 323, 233-238.	0.9	79
92	Trends in cpue and related changes in spatial distribution of demersal fish species in the Kattegat and Skagerrak, eastern North Sea, between 1981 and 2003. ICES Journal of Marine Science, 2005, 62, 671-682.	1.2	26
93	Feeding preferences of herring (Clupea harengus) and sprat (Sprattus sprattus) in the southern Baltic Sea. ICES Journal of Marine Science, 2004, 61, 1267-1277.	1.2	124
94	Diel spatial distribution and feeding activity of herring (Clupea harengus) and sprat (Sprattus) Tj ETQq0 0 0 rgBT	Overlock	10 Tf 50 622
95	The influence of biotic and abiotic factors on the growth of sprat (Sprattus sprattus) in the Baltic	0.5	46

95	Sea. Aquatic Living Resources, 2002, 15, 273-281.	0.5	46
96	Food-web and climate-related dynamics in the Baltic Sea: present and potential future applications in fish stock assessment and management. , 0, , 9-31.		6
97	Frameless—finding and refining a sampling frame for surveying recreational fisheries: lessons from estimating Swedish harvest of western Baltic cod. ICES Journal of Marine Science, 0, , .	1.2	1