Isabel C. F. R. Ferreira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9531965/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food and Chemical Toxicology, 2013, 51, 15-25.	3.6	1,185
2	Bioactivity of phenolic acids: Metabolites versus parent compounds: A review. Food Chemistry, 2015, 173, 501-513.	8.2	633
3	Adding Molecules to Food, Pros and Cons: A Review on Synthetic and Natural Food Additives. Comprehensive Reviews in Food Science and Food Safety, 2014, 13, 377-399.	11.7	535
4	Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity. Food Chemistry, 2007, 100, 1511-1516.	8.2	528
5	Antioxidants in Wild Mushrooms. Current Medicinal Chemistry, 2009, 16, 1543-1560.	2.4	498
6	Total phenols, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chemistry, 2007, 103, 413-419.	8.2	409
7	Natural food additives: Quo vadis?. Trends in Food Science and Technology, 2015, 45, 284-295.	15.1	390
8	Phenolic Compounds and Antimicrobial Activity of Olive (Olea europaea L. Cv. Cobrançosa) Leaves. Molecules, 2007, 12, 1153-1162.	3.8	385
9	Quantitative Analysis of Flavan-3-ols in Spanish Foodstuffs and Beverages. Journal of Agricultural and Food Chemistry, 2000, 48, 5331-5337.	5.2	383
10	Antioxidant activity of Portuguese honey samples: Different contributions of the entire honey and phenolic extract. Food Chemistry, 2009, 114, 1438-1443.	8.2	374
11	Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: An inter-species comparative study. Food and Chemical Toxicology, 2012, 50, 191-197.	3.6	364
12	Walnut (Juglans regia L.) leaves: Phenolic compounds, antibacterial activity and antioxidant potential of different cultivars. Food and Chemical Toxicology, 2007, 45, 2287-2295.	3.6	356
13	Wild and commercial mushrooms as source of nutrients and nutraceuticals. Food and Chemical Toxicology, 2008, 46, 2742-2747.	3.6	356
14	Total phenols, antioxidant potential and antimicrobial activity of walnut (Juglans regia L.) green husks. Food and Chemical Toxicology, 2008, 46, 2326-2331.	3.6	353
15	Antioxidant activities of the extracts from chestnut flower, leaf, skins and fruit. Food Chemistry, 2008, 107, 1106-1113.	8.2	352
16	Anthocyanin pigments in strawberry. LWT - Food Science and Technology, 2007, 40, 374-382.	5.2	351
17	Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review. Food Chemistry, 2016, 211, 41-50.	8.2	337
18	Phenolic compounds: current industrial applications, limitations and future challenges. Food and Function, 2021, 12, 14-29.	4.6	318

#	Article	IF	CITATIONS
19	Food colorants: Challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices. Trends in Food Science and Technology, 2016, 52, 1-15.	15.1	317
20	Antimicrobial activity of phenolic compounds identified in wild mushrooms, SAR analysis and docking studies. Journal of Applied Microbiology, 2013, 115, 346-357.	3.1	299
21	Bioactive properties and chemical composition of six walnut (Juglans regia L.) cultivars. Food and Chemical Toxicology, 2008, 46, 2103-2111.	3.6	284
22	Bioactivity and chemical characterization in hydrophilic and lipophilic compounds of Chenopodium ambrosioides L Journal of Functional Foods, 2013, 5, 1732-1740.	3.4	269
23	Evaluation of the antioxidant properties of fruits. Food Chemistry, 2004, 84, 13-18.	8.2	268
24	A Review on Antimicrobial Activity of Mushroom (Basidiomycetes) Extracts and Isolated Compounds. Planta Medica, 2012, 78, 1707-1718.	1.3	262
25	Chemical composition, antimicrobial, antioxidant and antitumor activity of Thymus serpyllum L., Thymus algeriensis Boiss. and Reut and Thymus vulgaris L. essential oils. Industrial Crops and Products, 2014, 52, 183-190.	5.2	259
26	Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities. Phytochemistry, 2015, 114, 38-55.	2.9	250
27	Hydroxycinnamic Acids and Their Derivatives: Cosmeceutical Significance, Challenges and Future Perspectives, a Review. Molecules, 2017, 22, 281.	3.8	246
28	Antihypertensive effects of the flavonoid quercetin. Pharmacological Reports, 2009, 61, 67-75.	3.3	243
29	Antioxidants: Reviewing the chemistry, food applications, legislation and role as preservatives. Trends in Food Science and Technology, 2018, 71, 107-120.	15.1	240
30	Compounds from Wild Mushrooms with Antitumor Potential. Anti-Cancer Agents in Medicinal Chemistry, 2010, 10, 424-436.	1.7	238
31	Strawberry-tree, blackthorn and rose fruits: Detailed characterisation in nutrients and phytochemicals with antioxidant properties. Food Chemistry, 2010, 120, 247-254.	8.2	236
32	Antioxidant properties and phenolic profile of the most widely appreciated cultivated mushrooms: A comparative study between in vivo and in vitro samples. Food and Chemical Toxicology, 2012, 50, 1201-1207.	3.6	235
33	Phenolic acids determination by HPLC–DAD–ESI/MS in sixteen different Portuguese wild mushrooms species. Food and Chemical Toxicology, 2009, 47, 1076-1079.	3.6	228
34	Phenolic profile and antioxidant activity of Coleostephus myconis (L.) Rchb.f.: An underexploited and highly disseminated species. Industrial Crops and Products, 2016, 89, 45-51.	5.2	226
35	Effect of Lactarius piperatus fruiting body maturity stage on antioxidant activity measured by several biochemical assays. Food and Chemical Toxicology, 2007, 45, 1731-1737.	3.6	224
36	InÂvivo antioxidant activity of phenolic compounds: Facts and gaps. Trends in Food Science and Technology, 2016, 48, 1-12.	15.1	214

#	Article	IF	CITATIONS
37	The Role of Phenolic Compounds in the Fight against Cancer – A Review. Anti-Cancer Agents in Medicinal Chemistry, 2013, 13, 1236-1258.	1.7	211
38	Microencapsulation of bioactives for food applications. Food and Function, 2015, 6, 1035-1052.	4.6	209
39	Fatty acid and sugar compositions, and nutritional value of five wild edible mushrooms from Northeast Portugal. Food Chemistry, 2007, 105, 140-145.	8.2	207
40	Grape pomace as a source of phenolic compounds and diverse bioactive properties. Food Chemistry, 2018, 253, 132-138.	8.2	206
41	Antioxidant activity of Agaricus sp. mushrooms by chemical, biochemical and electrochemical assays. Food Chemistry, 2008, 111, 61-66.	8.2	205
42	Chemical Composition and Biological Properties of Portuguese Wild Mushrooms: A Comprehensive Study. Journal of Agricultural and Food Chemistry, 2008, 56, 3856-3862.	5.2	198
43	Targeting excessive free radicals with peels and juices of citrus fruits: Grapefruit, lemon, lime and orange. Food and Chemical Toxicology, 2010, 48, 99-106.	3.6	191
44	Antimicrobial activity and bioactive compounds of Portuguese wild edible mushrooms methanolic extracts. European Food Research and Technology, 2007, 225, 151-156.	3.3	189
45	Table Olives from Portugal:  Phenolic Compounds, Antioxidant Potential, and Antimicrobial Activity. Journal of Agricultural and Food Chemistry, 2006, 54, 8425-8431.	5.2	187
46	Exploring plant tissue culture to improve the production of phenolic compounds: A review. Industrial Crops and Products, 2016, 82, 9-22.	5.2	182
47	Sweeteners as food additives in the XXI century: A review of what is known, and what is to come. Food and Chemical Toxicology, 2017, 107, 302-317.	3.6	182
48	Tocopherols composition of Portuguese wild mushrooms with antioxidant capacity. Food Chemistry, 2010, 119, 1443-1450.	8.2	181
49	Evaluation of bioactive properties and phenolic compounds in different extracts prepared from Salvia officinalis L Food Chemistry, 2015, 170, 378-385.	8.2	180
50	Cosmetics Preservation: A Review on Present Strategies. Molecules, 2018, 23, 1571.	3.8	177
51	Chemical and nutritional characterization of Chenopodium quinoa Willd (quinoa) grains: A good alternative to nutritious food. Food Chemistry, 2019, 280, 110-114.	8.2	177
52	Phenolic profiles of cultivated, in vitro cultured and commercial samples of Melissa officinalis L. infusions. Food Chemistry, 2013, 136, 1-8.	8.2	172
53	Candidiasis: Predisposing Factors, Prevention, Diagnosis and Alternative Treatment. Mycopathologia, 2014, 177, 223-240.	3.1	168
54	Functional foods based on extracts or compounds derived from mushrooms. Trends in Food Science and Technology, 2017, 66, 48-62.	15.1	164

#	Article	IF	CITATIONS
55	Enzyme-assisted extractions of polyphenols – A comprehensive review. Trends in Food Science and Technology, 2019, 88, 302-315.	15.1	160
56	Cymbopogon citratus leaves: Characterization of flavonoids by HPLC–PDA–ESI/MS/MS and an approach to their potential as a source of bioactive polyphenols. Food Chemistry, 2008, 110, 718-728.	8.2	159
57	Chemical composition of wild edible mushrooms and antioxidant properties of their water soluble polysaccharidic and ethanolic fractions. Food Chemistry, 2011, 126, 610-616.	8.2	157
58	Characterisation of phenolic compounds in wild fruits from Northeastern Portugal. Food Chemistry, 2013, 141, 3721-3730.	8.2	157
59	A comparative study between natural and synthetic antioxidants: Evaluation of their performance after incorporation into biscuits. Food Chemistry, 2017, 216, 342-346.	8.2	155
60	Leaves, flowers, immature fruits and leafy flowered stems of Malva sylvestris: A comparative study of the nutraceutical potential and composition. Food and Chemical Toxicology, 2010, 48, 1466-1472.	3.6	152
61	Edible flowers as sources of phenolic compounds with bioactive potential. Food Research International, 2018, 105, 580-588.	6.2	151
62	Effects of Conservation Treatment and Cooking on the Chemical Composition and Antioxidant Activity of Portuguese Wild Edible Mushrooms. Journal of Agricultural and Food Chemistry, 2007, 55, 4781-4788.	5.2	150
63	Biotechnological, nutritional and therapeutic uses of Pleurotus spp. (Oyster mushroom) related with its chemical composition: A review on the past decade findings. Trends in Food Science and Technology, 2016, 50, 103-117.	15.1	146
64	Anti-hepatocellular carcinoma activity using human HepG2 cells and hepatotoxicity of 6-substituted methyl 3-aminothieno[3,2-b]pyridine-2-carboxylate derivatives: InÂvitro evaluation, cell cycle analysis and QSAR studies. European Journal of Medicinal Chemistry, 2011, 46, 5800-5806.	5.5	145
65	Propolis and its constituent caffeic acid suppress LPS-stimulated pro-inflammatory response by blocking NF-ήB and MAPK activation in macrophages. Journal of Ethnopharmacology, 2013, 149, 84-92.	4.1	144
66	Optimized Analysis of Organic Acids in Edible Mushrooms from Portugal by Ultra Fast Liquid Chromatography and Photodiode Array Detection. Food Analytical Methods, 2013, 6, 309-316.	2.6	142
67	Nutritional composition and antioxidant activity of four tomato (Lycopersicon esculentum L.) farmer' varieties in Northeastern Portugal homegardens. Food and Chemical Toxicology, 2012, 50, 829-834.	3.6	140
68	Towards chemical and nutritional inventory of Portuguese wild edible mushrooms in different habitats. Food Chemistry, 2012, 130, 394-403.	8.2	139
69	Identification of anthocyanin pigments in strawberry (cv Camarosa) by LC using DAD and ESI-MS detection. European Food Research and Technology, 2002, 214, 248-253.	3.3	138
70	Phenolics from monofloral honeys protect human erythrocyte membranes against oxidative damage. Food and Chemical Toxicology, 2012, 50, 1508-1516.	3.6	134
71	Mushrooms extracts and compounds in cosmetics, cosmeceuticals and nutricosmetics—A review. Industrial Crops and Products, 2016, 90, 38-48.	5.2	134
72	Optimization of ultrasound-assisted extraction to obtain mycosterols from Agaricus bisporus L. by response surface methodology and comparison with conventional Soxhlet extraction. Food Chemistry, 2016, 197, 1054-1063.	8.2	132

#	Article	IF	CITATIONS
73	Chemical features and bioactivities of cornflower (Centaurea cyanus L.) capitula: The blue flowers and the unexplored non-edible part. Industrial Crops and Products, 2019, 128, 496-503.	5.2	131
74	Microalgae-Derived Pigments: A 10-Year Bibliometric Review and Industry and Market Trend Analysis. Molecules, 2020, 25, 3406.	3.8	131
75	Fortification of yogurts with different antioxidant preservatives: A comparative study between natural and synthetic additives. Food Chemistry, 2016, 210, 262-268.	8.2	130
76	Chemical, biochemical and electrochemical assays to evaluate phytochemicals and antioxidant activity of wild plants. Food Chemistry, 2011, 127, 1600-1608.	8.2	128
77	Decoction, infusion and hydroalcoholic extract of cultivated thyme: Antioxidant and antibacterial activities, and phenolic characterisation. Food Chemistry, 2015, 167, 131-137.	8.2	128
78	Chemical composition, and antioxidant and antimicrobial activities of three hazelnut (Corylus) Tj ETQq0 0 0 rgE	ST /Qverloc	k 10 Tf 50 54 126
79	Fruiting body, spores and in vitro produced mycelium of Ganoderma lucidum from Northeast Portugal: A comparative study of the antioxidant potential of phenolic and polysaccharidic extracts. Food Research International, 2012, 46, 135-140.	6.2	123
80	Use of UFLC-PDA for the Analysis of Organic Acids in Thirty-Five Species of Food and Medicinal Plants. Food Analytical Methods, 2013, 6, 1337-1344.	2.6	121
81	Hibiscus sabdariffa L. as a source of nutrients, bioactive compounds and colouring agents. Food Research International, 2017, 100, 717-723.	6.2	121
82	Antimicrobial and demelanizing activity of Ganoderma lucidum extract, p-hydroxybenzoic and cinnamic acids and their synthetic acetylated glucuronide methyl esters. Food and Chemical Toxicology, 2013, 58, 95-100.	3.6	120
83	Characterization of phenolic compounds in flowers of wild medicinal plants from Northeastern Portugal. Food and Chemical Toxicology, 2012, 50, 1576-1582.	3.6	118
84	Effect of gamma and electron beam irradiation on the physico-chemical and nutritional properties of mushrooms: A review. Food Chemistry, 2012, 135, 641-650.	8.2	118
85	Chemical composition of wild and commercial Achillea millefolium L. and bioactivity of the methanolic extract, infusion and decoction. Food Chemistry, 2013, 141, 4152-4160.	8.2	118
86	Mediterranean non-cultivated vegetables as dietary sources of compounds with antioxidant and biological activity. LWT - Food Science and Technology, 2014, 55, 389-396.	5.2	117
87	Bioactive and functional compounds in apple pomace from juice and cider manufacturing: Potential use in dermal formulations. Trends in Food Science and Technology, 2019, 90, 76-87.	15.1	117
88	Exotic fruits as a source of important phytochemicals: Improving the traditional use of Rosa canina fruits in Portugal. Food Research International, 2011, 44, 2233-2236.	6.2	116
89	Wild edible plants: Nutritional and toxicological characteristics, retrieval strategies and importance for today's society. Food and Chemical Toxicology, 2017, 110, 165-188.	3.6	114
90	New sialic acids from biological sources identified by a comprehensive and sensitive approach: liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) of SIA quinoxalinones. Glycobiology, 1997, 7, 421-432.	2.5	113

#	Article	IF	CITATIONS
91	Phenolics and antimicrobial activity of traditional stoned table olives †alcaparra'. Bioorganic and Medicinal Chemistry, 2006, 14, 8533-8538.	3.0	113
92	Nutrients, phytochemicals and bioactivity of wild Roman chamomile: A comparison between the herb and its preparations. Food Chemistry, 2013, 136, 718-725.	8.2	112
93	Optimization of heat- and ultrasound-assisted extraction of anthocyanins from Hibiscus sabdariffa calyces for natural food colorants. Food Chemistry, 2019, 275, 309-321.	8.2	112
94	The contribution of phenolic acids to the anti-inflammatory activity of mushrooms: Screening in phenolic extracts, individual parent molecules and synthesized glucuronated and methylated derivatives. Food Research International, 2015, 76, 821-827.	6.2	111
95	Edible halophytes of the Mediterranean basin: Potential candidates for novel food products. Trends in Food Science and Technology, 2018, 74, 69-84.	15.1	111
96	Salinity effect on nutritional value, chemical composition and bioactive compounds content of Cichorium spinosum L. Food Chemistry, 2017, 214, 129-136.	8.2	110
97	Nonthermal physical technologies to decontaminate and extend the shelf-life of fruits and vegetables: Trends aiming at quality and safety. Critical Reviews in Food Science and Nutrition, 2017, 57, 2095-2111.	10.3	109
98	Antioxidant activity and bioactive compounds of ten Portuguese regional and commercial almond cultivars. Food and Chemical Toxicology, 2008, 46, 2230-2235.	3.6	108
99	Activity of phenolic compounds from plant origin against Candida species. Industrial Crops and Products, 2015, 74, 648-670.	5.2	108
100	Chemical characterisation and bioactive properties of Prunus avium L.: The widely studied fruits and the unexplored stems. Food Chemistry, 2015, 173, 1045-1053.	8.2	107
101	Microwave-assisted extraction of phenolic acids and flavonoids and production of antioxidant ingredients from tomato: A nutraceutical-oriented optimization study. Separation and Purification Technology, 2016, 164, 114-124.	7.9	106
102	Synthesis, antiangiogenesis evaluation and molecular docking studies of 1-aryl-3-[(thieno[3,2-b]pyridin-7-ylthio)phenyl]ureas: Discovery of a new substitution pattern for type II VEGFR-2 Tyr kinase inhibitors. Bioorganic and Medicinal Chemistry, 2015, 23, 6497-6509.	3.0	105
103	Decoction, infusion and hydroalcoholic extract of Origanum vulgare L.: Different performances regarding bioactivity and phenolic compounds. Food Chemistry, 2014, 158, 73-80.	8.2	101
104	Enhanced extraction of phenolic compounds using choline chloride based deep eutectic solvents from Juglans regia L Industrial Crops and Products, 2018, 115, 261-271.	5.2	100
105	Study and characterization of selected nutrients in wild mushrooms from Portugal by gas chromatography and high performance liquid chromatography. Microchemical Journal, 2009, 93, 195-199.	4.5	99
106	Catechin-based extract optimization obtained from Arbutus unedo L. fruits using maceration/microwave/ultrasound extraction techniques. Industrial Crops and Products, 2017, 95, 404-415.	5.2	99
107	Wild mushrooms Clitocybe alexandri and Lepista inversa: In vitro antioxidant activity and growth inhibition of human tumour cell lines. Food and Chemical Toxicology, 2010, 48, 2881-2884.	3.6	98
108	Antioxidant Characterization of Native Monofloral Cuban Honeys. Journal of Agricultural and Food Chemistry, 2010, 58, 9817-9824.	5.2	97

#	Article	IF	CITATIONS
109	Chemical composition and antioxidant activity of dried powder formulations of Agaricus blazei and Lentinus edodes. Food Chemistry, 2013, 138, 2168-2173.	8.2	97
110	Phenolic profiles of in vivo and in vitro grown Coriandrum sativum L Food Chemistry, 2012, 132, 841-848.	8.2	96
111	Optimization and comparison of heat and ultrasound assisted extraction techniques to obtain anthocyanin compounds from Arbutus unedo L. Fruits. Food Chemistry, 2018, 264, 81-91.	8.2	95
112	Flavonoid Composition and Antitumor Activity of Bee Bread Collected in Northeast Portugal. Molecules, 2017, 22, 248.	3.8	94
113	Food Bioactive Compounds and Emerging Techniques for Their Extraction: Polyphenols as a Case Study. Foods, 2021, 10, 37.	4.3	94
114	Lamiaceae often used in Portuguese folk medicine as a source of powerful antioxidants: Vitamins and phenolics. LWT - Food Science and Technology, 2010, 43, 544-550.	5.2	93
115	Pterospartum tridentatum, Gomphrena globosa and Cymbopogon citratus: A phytochemical study focused on antioxidant compounds. Food Research International, 2014, 62, 684-693.	6.2	93
116	Antioxidant activity and phenolic contents of Olea europaea L. leaves sprayed with different copper formulations. Food Chemistry, 2007, 103, 188-195.	8.2	92
117	Characterization and Quantification of Phenolic Compounds in Four Tomato (Lycopersicon) Tj ETQq1 1 0.784314 Nutrition, 2012, 67, 229-234.	rgBT /Ove 3.2	rlock 10 Tf 92
118	Phenolic Compounds as Nutraceuticals or Functional Food Ingredients. Current Pharmaceutical Design, 2017, 23, 2787-2806.	1.9	91
119	A comparative study of chemical composition, antioxidant and antimicrobial properties of Morchella esculenta (L.) Pers. from Portugal and Serbia. Food Research International, 2013, 51, 236-243.	6.2	90
120	The methanolic extract of Cordyceps militaris (L.) Link fruiting body shows antioxidant, antibacterial, antifungal and antihuman tumor cell lines properties. Food and Chemical Toxicology, 2013, 62, 91-98.	3.6	90
121	Chemical characterization and biological activity of Chaga (Inonotus obliquus), a medicinal "mushroom― Journal of Ethnopharmacology, 2015, 162, 323-332.	4.1	90
122	Wastes and by-products: Upcoming sources of carotenoids for biotechnological purposes and health-related applications. Trends in Food Science and Technology, 2017, 62, 33-48.	15.1	90
123	Effect of Fruiting Body Maturity Stage on Chemical Composition and Antimicrobial Activity of <i>Lactarius</i> sp. Mushrooms. Journal of Agricultural and Food Chemistry, 2007, 55, 8766-8771.	5.2	89
124	Antifungal activity and detailed chemical characterization of Cistus ladanifer phenolic extracts. Industrial Crops and Products, 2013, 41, 41-45.	5.2	89
125	Chemical characterization, antioxidant, anti-inflammatory and cytotoxic properties of bee venom collected in Northeast Portugal. Food and Chemical Toxicology, 2016, 94, 172-177.	3.6	89
126	Anti-inflammatory potential of mushroom extracts and isolated metabolites. Trends in Food Science and Technology, 2016, 50, 193-210.	15.1	89

#	Article	IF	CITATIONS
127	Nutritional and antioxidant properties of pulp and seeds of two xoconostle cultivars (Opuntia) Tj ETQq1 1 0.7843 Food Research International, 2012, 46, 279-285.	14 rgBT /0 6.2	Overlock 10 88
128	Nutritional and chemical characterization of edible petals and corresponding infusions: Valorization as new food ingredients. Food Chemistry, 2017, 220, 337-343.	8.2	88
129	The past decade findings related with nutritional composition, bioactive molecules and biotechnological applications of Passiflora spp. (passion fruit). Trends in Food Science and Technology, 2016, 58, 79-95.	15.1	87
130	Anthocyanin-rich extract of jabuticaba epicarp as a natural colorant: Optimization of heat- and ultrasound-assisted extractions and application in a bakery product. Food Chemistry, 2020, 316, 126364.	8.2	87
131	Antimicrobial activity of wild mushroom extracts against clinical isolates resistant to different antibiotics. Journal of Applied Microbiology, 2012, 113, 466-475.	3.1	86
132	Phytochemical composition and bioactive compounds of common purslane (Portulaca oleracea L.) as affected by crop management practices. Trends in Food Science and Technology, 2016, 55, 1-10.	15.1	86
133	New phytochemicals as potential human anti-aging compounds: Reality, promise, and challenges. Critical Reviews in Food Science and Nutrition, 2018, 58, 942-957.	10.3	83
134	Recovery of bioactive anthocyanin pigments from Ficus carica L. peel by heat, microwave, and ultrasound based extraction techniques. Food Research International, 2018, 113, 197-209.	6.2	83
135	Antibacterial activity of Veronica montana L. extract and of protocatechuic acid incorporated in a food system. Food and Chemical Toxicology, 2013, 55, 209-213.	3.6	82
136	Chemical composition, nutritional value and antioxidant properties of Mediterranean okra genotypes in relation to harvest stage. Food Chemistry, 2018, 242, 466-474.	8.2	82
137	Bee bread as a functional product: Chemical composition and bioactive properties. LWT - Food Science and Technology, 2019, 109, 276-282.	5.2	82
138	The nutritional composition of fennel (Foeniculum vulgare): Shoots, leaves, stems and inflorescences. LWT - Food Science and Technology, 2010, 43, 814-818.	5.2	81
139	Edible flowers: Emerging components in the diet. Trends in Food Science and Technology, 2019, 93, 244-258.	15.1	81
140	Toward the Antioxidant and Chemical Characterization of Mycorrhizal Mushrooms from Northeast Portugal. Journal of Food Science, 2011, 76, C824-30.	3.1	80
141	Comparing the composition and bioactivity of <i>Crataegus Monogyna</i> flowers and fruits used in folk medicine. Phytochemical Analysis, 2011, 22, 181-188.	2.4	80
142	By-product recovery of Opuntia spp. peels: Betalainic and phenolic profiles and bioactive properties. Industrial Crops and Products, 2017, 107, 353-359.	5.2	80
143	Antioxidant and antimicrobial properties of dried Portuguese apple variety (Malus domestica Borkh.) Tj ETQq1 1 0	.784314 r 8.2	gBT /Overlc
144	Potato peels as sources of functional compounds for the food industry: A review. Trends in Food	15.1	80

Science and Technology, 2020, 103, 118-129.

#	Article	IF	CITATIONS
145	Nutritional composition and bioactive properties of commonly consumed wild greens: Potential sources for new trends in modern diets. Food Research International, 2011, 44, 2634-2640.	6.2	79
146	Phenolic, Polysaccharidic, and Lipidic Fractions of Mushrooms from Northeastern Portugal: Chemical Compounds with Antioxidant Properties. Journal of Agricultural and Food Chemistry, 2012, 60, 4634-4640.	5.2	78
147	Antifungal activity of phenolic compounds identified in flowers from North Eastern Portugal against <i>Candida</i> species. Future Microbiology, 2014, 9, 139-146.	2.0	78
148	The potential of Ganoderma lucidum extracts as bioactive ingredients in topical formulations, beyond its nutritional benefits. Food and Chemical Toxicology, 2017, 108, 139-147.	3.6	78
149	Plant phenolics as functional food ingredients. Advances in Food and Nutrition Research, 2019, 90, 183-257.	3.0	78
150	Infusion and decoction of wild German chamomile: Bioactivity and characterization of organic acids and phenolic compounds. Food Chemistry, 2013, 136, 947-954.	8.2	77
151	Spray-dried Spirulina platensis as an effective ingredient to improve yogurt formulations: Testing different encapsulating solutions. Journal of Functional Foods, 2019, 60, 103427.	3.4	77
152	Sugars Profiles of Different Chestnut (Castanea sativa Mill.) and Almond (Prunus dulcis) Cultivars by HPLC-RI. Plant Foods for Human Nutrition, 2010, 65, 38-43.	3.2	75
153	In vitro antioxidant properties and characterization in nutrients and phytochemicals of six medicinal plants from the Portuguese folk medicine. Industrial Crops and Products, 2010, 32, 572-579.	5.2	75
154	An insight into antidiabetic properties of six medicinal and edible mushrooms: Inhibition of α-amylase and α-glucosidase linked to type-2 diabetes. South African Journal of Botany, 2019, 120, 100-103.	2.5	75
155	Tocopherol composition and antioxidant activity of Spanish wild vegetables. Genetic Resources and Crop Evolution, 2012, 59, 851-863.	1.6	74
156	Systematic evaluation of the antioxidant potential of different parts of Foeniculum vulgare Mill. from Portugal. Food and Chemical Toxicology, 2009, 47, 2458-2464.	3.6	73
157	The flavonoid quercetin induces acute vasodilator effects in healthy volunteers: Correlation with beta-glucuronidase activity. Pharmacological Research, 2014, 89, 11-18.	7.1	73
158	Antioxidant and antimicrobial activities of a purified polysaccharide from yerba mate (Ilex) Tj ETQq0 0 0 rgBT /Ov	erlo <u>c</u> k 10 ⁻ 7.5	Tf <u>50</u> 222 Td
159	Effect of solvent and extraction temperatures on the antioxidant potential of traditional stoned table olives "alcaparras― LWT - Food Science and Technology, 2008, 41, 739-745.	5.2	72
160	Characterization of phenolic compounds in wild medicinal flowers from Portugal by HPLC–DAD–ESI/MS and evaluation of antifungal properties. Industrial Crops and Products, 2013, 44, 104-110.	5.2	72
161	Development of a Novel Methodology for the Analysis of Ergosterol in Mushrooms. Food Analytical Methods, 2014, 7, 217-223.	2.6	72

162Antimicrobial and antioxidant properties of various Greek garlic genotypes. Food Chemistry, 2018, 245,
7-12.8.272

#	Article	IF	CITATIONS
163	Lentil flour formulations to develop new snack-type products by extrusion processing: Phytochemicals and antioxidant capacity. Journal of Functional Foods, 2015, 19, 537-544.	3.4	71
164	Understanding the potential benefits of thyme and its derived products for food industry and consumer health: From extraction of value-added compounds to the evaluation of bioaccessibility, bioavailability, anti-inflammatory, and antimicrobial activities. Critical Reviews in Food Science and Nutrition, 2019, 59, 2879-2895.	10.3	71
165	Impact of postharvest preservation methods on nutritional value and bioactive properties of mushrooms. Trends in Food Science and Technology, 2021, 110, 418-431.	15.1	71
166	A Review on Antifungal Activity of Mushroom (Basidiomycetes) Extracts and Isolated Compounds. Current Topics in Medicinal Chemistry, 2013, 13, 2648-2659.	2.1	70
167	Bioactive formulations prepared from fruiting bodies and submerged culture mycelia of the Brazilian edible mushroom Pleurotus ostreatoroseus Singer. Food and Function, 2015, 6, 2155-2164.	4.6	70
168	Wild mushrooms and their mycelia as sources of bioactive compounds: Antioxidant, anti-inflammatory and cytotoxic properties. Food Chemistry, 2017, 230, 40-48.	8.2	70
169	Use of HPLC–DAD–ESI/MS to profile phenolic compounds in edible wild greens from Portugal. Food Chemistry, 2011, 127, 169-173.	8.2	69
170	Phenolic extracts of Rubus ulmifolius Schott flowers: characterization, microencapsulation and incorporation into yogurts as nutraceutical sources. Food and Function, 2014, 5, 1091-1100.	4.6	69
171	Phenolic composition and antioxidant capacity of yellow and purple-red Ecuadorian cultivars of tree tomato (Solanum betaceum Cav.). Food Chemistry, 2016, 194, 1073-1080.	8.2	69
172	UV-irradiated mushrooms as a source of vitamin D 2 : A review. Trends in Food Science and Technology, 2017, 70, 82-94.	15.1	69
173	Effects of O-methylated metabolites of quercetin on oxidative stress, thermotolerance, lifespan and bioavailability on Caenorhabditis elegans. Food and Function, 2011, 2, 445.	4.6	68
174	Antioxidant activity, ascorbic acid, phenolic compounds and sugars of wild and commercial Tuberaria lignosa samples: Effects of drying and oral preparation methods. Food Chemistry, 2012, 135, 1028-1035.	8.2	68
175	Wild edible fruits as a potential source of phytochemicals with capacity to inhibit lipid peroxidation. European Journal of Lipid Science and Technology, 2013, 115, 176-185.	1.5	68
176	Cultivated strains of Agaricus bisporus and A. brasiliensis: chemical characterization and evaluation of antioxidant and antimicrobial properties for the final healthy product – natural preservatives in yoghurt. Food and Function, 2014, 5, 1602.	4.6	68
177	Development of Mushroom-Based Cosmeceutical Formulations with Anti-Inflammatory, Anti-Tyrosinase, Antioxidant, and Antibacterial Properties. Molecules, 2016, 21, 1372.	3.8	68
178	Phenolic Compounds and Its Bioavailability. Advances in Food and Nutrition Research, 2017, 82, 1-44.	3.0	68
179	Biodegradation of bioaccessible textile azo dyes by Phanerochaete chrysosporium. Journal of Biotechnology, 2001, 89, 91-98.	3.8	67
180	Studies on Chemical Constituents and Bioactivity of <i>Rosa micrantha</i> : An Alternative Antioxidants Source for Food, Pharmaceutical, or Cosmetic Applications. Journal of Agricultural and Food Chemistry, 2010, 58, 6277-6284.	5.2	67

#	Article	IF	CITATIONS
181	Nutritional value, bioactive compounds and antioxidant properties of three edible mushrooms from Poland. Food Bioscience, 2015, 11, 48-55.	4.4	67
182	Nutritional characterisation of Pleurotus ostreatus (Jacq. ex Fr.) P. Kumm. produced using paper scraps as substrate. Food Chemistry, 2015, 169, 396-400.	8.2	67
183	Measuring IgA Anti-β2-Glycoprotein I and IgG/IgA Anti-Domain I Antibodies Adds Value to Current Serological Assays for the Antiphospholipid Syndrome. PLoS ONE, 2016, 11, e0156407.	2.5	66
184	Natural Food Colorants and Preservatives: A Review, a Demand, and a Challenge. Journal of Agricultural and Food Chemistry, 2022, 70, 2789-2805.	5.2	66
185	Bioactive compounds content and antimicrobial activities of wild edible Asteraceae species of the Mediterranean flora under commercial cultivation conditions. Food Research International, 2019, 119, 859-868.	6.2	65
186	Hazel (Corylus avellana L.) leaves as source of antimicrobial and antioxidative compounds. Food Chemistry, 2007, 105, 1018-1025.	8.2	64
187	Leaves and decoction of Juglans regia L.: Different performances regarding bioactive compounds and in vitro antioxidant and antitumor effects. Industrial Crops and Products, 2013, 51, 430-436.	5.2	64
188	A detailed comparative study between chemical and bioactive properties of <i>Ganoderma lucidum</i> from different origins. International Journal of Food Sciences and Nutrition, 2014, 65, 42-47.	2.8	64
189	Development of a functional dairy food: Exploring bioactive and preservation effects of chamomile (Matricaria recutita L.). Journal of Functional Foods, 2015, 16, 114-124.	3.4	64
190	Chemical Composition and Yield of Six Genotypes of Common Purslane (Portulaca oleracea L.): An Alternative Source of Omega-3 Fatty Acids. Plant Foods for Human Nutrition, 2015, 70, 420-426.	3.2	64
191	Effects of trophism on nutritional and nutraceutical potential of wild edible mushrooms. Food Research International, 2011, 44, 1029-1035.	6.2	63
192	Foeniculum vulgare Mill. as natural conservation enhancer and health promoter by incorporation in cottage cheese. Journal of Functional Foods, 2015, 12, 428-438.	3.4	63
193	Edible flowers of Viola tricolor L. as a new functional food: Antioxidant activity, individual phenolics and effects of gamma and electron-beam irradiation. Food Chemistry, 2015, 179, 6-14.	8.2	63
194	Nutritional value, bioactive compounds, antimicrobial activity and bioaccessibility studies with wild edible mushrooms. LWT - Food Science and Technology, 2015, 63, 799-806.	5.2	63
195	Chemical, nutritive composition and a wide range of bioactive properties of honey mushroom Armillaria mellea (Vahl: Fr.) Kummer. Food and Function, 2017, 8, 3239-3249.	4.6	63
196	Jabuticaba residues (Myrciaria jaboticaba (Vell.) Berg) are rich sources of valuable compounds with bioactive properties. Food Chemistry, 2020, 309, 125735.	8.2	63
197	Contribution of essential oils and phenolics to the antioxidant properties of aromatic plants. Industrial Crops and Products, 2010, 32, 152-156.	5.2	62
198	Valorisation of tomato wastes for development of nutrient-rich antioxidant ingredients: A sustainable approach towards the needs of the today's society. Innovative Food Science and Emerging Technologies, 2017, 41, 160-171.	5.6	62

#	Article	IF	CITATIONS
199	Merlot grape pomace hydroalcoholic extract improves the oxidative and inflammatory states of rats with adjuvant-induced arthritis. Journal of Functional Foods, 2017, 33, 408-418.	3.4	62
200	Nutritional, Fatty Acid and Triacylglycerol Profiles of <i>Castanea sativa</i> Mill. Cultivars: A Compositional and Chemometric Approach. Journal of Agricultural and Food Chemistry, 2009, 57, 2836-2842.	5.2	61
201	Characterization of phenolic compounds and antioxidant properties of Glycyrrhiza glabra L. rhizomes and roots. RSC Advances, 2015, 5, 26991-26997.	3.6	61
202	Phenolic compounds characterization by LC-DAD- ESI/MSn and bioactive properties of Thymus algeriensis Boiss. & Reut. and Ephedra alata Decne. Food Research International, 2019, 116, 312-319.	6.2	61
203	Chemical and bioactive characterization of the aromatic plant <i>Levisticum officinale</i> W.D.J. Koch: a comprehensive study. Food and Function, 2020, 11, 1292-1303.	4.6	61
204	Evaluation of the antioxidant properties of diarylamines in the benzo[b]thiophene series by free radical scavenging activity and reducing power. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 1384-1387.	2.2	60
205	Biomolecule Profiles in Inedible Wild Mushrooms with Antioxidant Value. Molecules, 2011, 16, 4328-4338.	3.8	60
206	Crataegus monogyna buds and fruits phenolic extracts: Growth inhibitory activity on human tumor cell lines and chemical characterization by HPLC–DAD–ESI/MS. Food Research International, 2012, 49, 516-523.	6.2	60
207	Nutritional composition, antioxidant activity and phenolic compounds of wild Taraxacum sect. Ruderalia. Food Research International, 2014, 56, 266-271.	6.2	60
208	Coloring attributes of betalains: a key emphasis on stability and future applications. Food and Function, 2017, 8, 1357-1372.	4.6	60
209	Optimization and comparison of maceration and microwave extraction systems for the production of phenolic compounds from Juglans regia L. for the valorization of walnut leaves. Industrial Crops and Products, 2017, 107, 341-352.	5.2	60
210	Infusions and Decoctions of Mixed Herbs used in Folk Medicine: Synergism in Antioxidant Potential. Phytotherapy Research, 2011, 25, 1209-1214.	5.8	59
211	Extraction of triterpenoids and phenolic compounds from <i>Ganoderma lucidum</i> : optimization study using the response surface methodology. Food and Function, 2018, 9, 209-226.	4.6	59
212	Vaccinium myrtillus L. Fruits as a Novel Source of Phenolic Compounds with Health Benefits and Industrial Applications - A Review. Current Pharmaceutical Design, 2020, 26, 1917-1928.	1.9	59
213	Cold extraction of phenolic compounds from watercress by high hydrostatic pressure: Process modelling and optimization. Separation and Purification Technology, 2018, 192, 501-512.	7.9	59
214	Targeted metabolites analysis in wild Boletus species. LWT - Food Science and Technology, 2011, 44, 1343-1348.	5.2	58
215	Nutritional and in vitro antioxidant properties of edible wild greens in Iberian Peninsula traditional diet. Food Chemistry, 2011, 125, 488-494.	8.2	58
216	Evaluation of the Chemical and Antioxidant Properties of Wild and Cultivated Mushrooms of Ghana. Molecules, 2014, 19, 19532-19548.	3.8	58

#	Article	IF	CITATIONS
217	Phenolic Profiling of Duchesnea indica Combining Macroporous Resin Chromatography (MRC) with HPLC-ESI-MS/MS and ESI-IT-MS. Molecules, 2015, 20, 22463-22475.	3.8	58
218	Phytochemicals and bioactive properties of llex paraguariensis: An in-vitro comparative study between the whole plant, leaves and stems. Food Research International, 2015, 78, 286-294.	6.2	58
219	Rosemary extracts in functional foods: extraction, chemical characterization and incorporation of free and microencapsulated forms in cottage cheese. Food and Function, 2016, 7, 2185-2196.	4.6	58
220	Palladium-catalyzed amination and cyclization to heteroannellated indoles and carbazoles. Tetrahedron, 2003, 59, 3737-3743.	1.9	57
221	Bactericidal, quorum quenching and anti-biofilm nanofactories: a new niche for nanotechnologists. Critical Reviews in Biotechnology, 2017, 37, 525-540.	9.0	57
222	<scp><i>Fucus vesiculosus</i></scp> extracts as natural antioxidants for improvement of physicochemical properties and shelf life of pork patties formulated with oleogels. Journal of the Science of Food and Agriculture, 2019, 99, 4561-4570.	3.5	57
223	Influence of the drying method in the antioxidant potential and chemical composition of four shrubby flowering plants from the tribe Genisteae (Fabaceae). Food and Chemical Toxicology, 2011, 49, 2983-2989.	3.6	56
224	Optimization of microwave-assisted extraction of ergosterol from Agaricus bisporus L. by-products using response surface methodology. Food and Bioproducts Processing, 2016, 100, 25-35.	3.6	56
225	Multifunctional graphene-based magnetic nanocarriers for combined hyperthermia and dual stimuli-responsive drug delivery. Materials Science and Engineering C, 2018, 93, 206-217.	7.3	56
226	Sanguinello and Tarocco (Citrus sinensis [L.] Osbeck): Bioactive compounds and colour appearance of blood oranges. Food Chemistry, 2019, 270, 395-402.	8.2	56
227	Compositional Features and Bioactive Properties of Aloe vera Leaf (Fillet, Mucilage, and Rind) and Flower. Antioxidants, 2019, 8, 444.	5.1	56
228	Extraction and Isolation of Phenolic Compounds. Methods in Molecular Biology, 2012, 864, 427-464.	0.9	55
229	Nutritional and antioxidant contributions of Laurus nobilis L. leaves: Would be more suitable a wild or a cultivated sample?. Food Chemistry, 2014, 156, 339-346.	8.2	55
230	Spray-drying microencapsulation of synergistic antioxidant mushroom extracts and their use as functional food ingredients. Food Chemistry, 2015, 188, 612-618.	8.2	55
231	Non-fermented and fermented jabuticaba (Myrciaria cauliflora Mart.) pomaces as valuable sources of functional ingredients. Food Chemistry, 2016, 208, 220-227.	8.2	55
232	Extraction of rosmarinic acid from Melissa officinalis L. by heat-, microwave- and ultrasound-assisted extraction techniques: A comparative study through response surface analysis. Separation and Purification Technology, 2017, 186, 297-308.	7.9	55
233	Phenolic composition and antioxidant, antimicrobial and cytotoxic properties of hop (Humulus) Tj ETQq1 1 0.78	4314 rgBT 5.2	Overlock
234	Could fruits be a reliable source of food colorants? Pros and cons of these natural additives.	10.3	55

234 Critical Reviews in Food Science and Nutrition, 2021, 61, 805-835. 10.3 55

#	Article	IF	CITATIONS
235	Preparation of quercetin glucuronides and characterization by HPLC–DAD–ESI/MS. European Food Research and Technology, 2008, 227, 1069-1076.	3.3	54
236	Optimization of the determination of tocopherols in Agaricus sp. edible mushrooms by a normal phase liquid chromatographic method. Food Chemistry, 2008, 110, 1046-1050.	8.2	54
237	Morphological, nutritional and chemical description of "Vatikiotikoâ€, an onion local landrace from Greece. Food Chemistry, 2015, 182, 156-163.	8.2	54
238	Phytochemical profile and biological activities of 'Ora-pro-nobis' leaves (Pereskia aculeata Miller), an underexploited superfood from the Brazilian Atlantic Forest. Food Chemistry, 2019, 294, 302-308.	8.2	54
239	Toxicity effects of fungicide residues on the wine-producing process. Food Microbiology, 2006, 23, 393-398.	4.2	53
240	Bioactive properties of the medicinal mushroom Leucopaxillus giganteus mycelium obtained in the presence of different nitrogen sources. Food Chemistry, 2007, 105, 179-186.	8.2	53
241	Nutrients, phytochemicals and antioxidant activity in wild populations of Allium ampeloprasum L., a valuable underutilized vegetable. Food Research International, 2014, 62, 272-279.	6.2	53
242	Stability and biological activity of Merlot (Vitis vinifera) grape pomace phytochemicals after simulated in vitro gastrointestinal digestion and colonic fermentation. Journal of Functional Foods, 2017, 36, 410-417.	3.4	53
243	Functionalization of yogurts with Agaricus bisporus extracts encapsulated in spray-dried maltodextrin crosslinked with citric acid. Food Chemistry, 2018, 245, 845-853.	8.2	53
244	Flavanol–anthocyanin pigments in corn: NMR characterisation and presence in different purple corn varieties. Journal of Food Composition and Analysis, 2008, 21, 521-526.	3.9	52
245	Antioxidant properties, anti-hepatocellular carcinoma activity and hepatotoxicity of artichoke, milk thistle and borututu. Industrial Crops and Products, 2013, 49, 61-65.	5.2	52
246	Extraction, identification, fractionation and isolation of phenolic compounds in plants with hepatoprotective effects. Journal of the Science of Food and Agriculture, 2016, 96, 1068-1084.	3.5	52
247	Floral parts of Gomphrena globosa L. as a novel alternative source of betacyanins: Optimization of the extraction using response surface methodology. Food Chemistry, 2017, 229, 223-234.	8.2	52
248	Halophytic herbs of the Mediterranean basin: An alternative approach to health. Food and Chemical Toxicology, 2018, 114, 155-169.	3.6	52
249	Evaluation of the Phenolic Profile of Castanea sativa Mill. By-Products and Their Antioxidant and Antimicrobial Activity against Multiresistant Bacteria. Antioxidants, 2020, 9, 87.	5.1	52
250	Phenolic profile of seventeen Portuguese wild mushrooms. LWT - Food Science and Technology, 2011, 44, 343-346.	5.2	51
251	Nutrients and non-nutrients composition and bioactivity of wild and cultivated Coprinus comatus (O.F.MüII.) Pers Food and Chemical Toxicology, 2013, 59, 289-296.	3.6	51
252	Bioactivity of Different Enriched Phenolic Extracts of Wild Fruits from Northeastern Portugal: A Comparative Study. Plant Foods for Human Nutrition, 2014, 69, 37-42.	3.2	51

#	Article	IF	CITATIONS
253	Oxidative stress-dependent activation of the eIF2α–ATFr unfolded protein response branch by skin sensitizer 1-fluoro-2,4-dinitrobenzene modulates dendritic-like cell maturation and inflammatory status in a biphasic manner. Free Radical Biology and Medicine, 2014, 77, 217-229.	2.9	51
254	The powerful in vitro bioactivity of Euterpe oleracea Mart. seeds and related phenolic compounds. Industrial Crops and Products, 2015, 76, 318-322.	5.2	51
255	Long-term storage of onion and the factors that affect its quality: A critical review. Food Reviews International, 2017, 33, 62-83.	8.4	51
256	Nutritional Value and Bioactive Compounds Characterization of Plant Parts From Cynara cardunculus L. (Asteraceae) Cultivated in Central Greece. Frontiers in Plant Science, 2018, 9, 459.	3.6	51
257	In vitro and in vivo evaluation of enzymatic and antioxidant activity, cytotoxicity and genotoxicity of curcumin-loaded solid dispersions. Food and Chemical Toxicology, 2019, 125, 29-37.	3.6	51
258	Phytochemical Characterization and Bioactive Properties of Cinnamon Basil (Ocimum basilicum cv.) Tj ETQqO 0 (OrgBT ∕Ov	erlock 10 Tf 5
259	Portuguese wild mushrooms at the "pharma–nutrition―interface: Nutritional characterization and antioxidant properties. Food Research International, 2013, 50, 1-9.	6.2	50
260	Melissa officinalis L. decoctions as functional beverages: a bioactive approach and chemical characterization. Food and Function, 2015, 6, 2240-2248.	4.6	50
261	Antimicrobial and cytotoxic activities of 1,2,3-triazole-sucrose derivatives. Carbohydrate Research, 2015, 417, 66-71.	2.3	50
262	Chemical and antioxidant parameters of dried forms of ginger rhizomes. Industrial Crops and Products, 2015, 77, 30-35.	5.2	50
263	A natural food ingredient based on ergosterol: optimization of the extraction from <i>Agaricus blazei</i> , evaluation of bioactive properties and incorporation in yogurts. Food and Function, 2018, 9, 1465-1474.	4.6	50
264	Nutritional value and chemical composition of Greek artichoke genotypes. Food Chemistry, 2018, 267, 296-302.	8.2	50
265	Incorporation of natural colorants obtained from edible flowers in yogurts. LWT - Food Science and Technology, 2018, 97, 668-675.	5.2	50
266	Phenolic Composition and Bioactivity of Lavandula pedunculata (Mill.) Cav. Samples from Different Geographical Origin. Molecules, 2018, 23, 1037.	3.8	50
267	Physicochemical characterization and microbiology of wheat and rye flours. Food Chemistry, 2019, 280, 123-129.	8.2	50
268	Novel approaches in anthocyanin research - Plant fortification and bioavailability issues. Trends in Food Science and Technology, 2021, 117, 92-105.	15.1	50
269	Phytochemical Composition and Bioactive Effects of Salvia africana, Salvia officinalis â€~Icterina' and Salvia mexicana Aqueous Extracts. Molecules, 2019, 24, 4327	3.8	49
270	Grown to Be Blue—Antioxidant Properties and Health Effects of Colored Vegetables. Part II: Leafy, Fruit, and Other Vegetables. Antioxidants, 2020, 9, 97.	5.1	49

#	Article	IF	CITATIONS
271	Chitosan/nanocellulose electrospun fibers with enhanced antibacterial and antifungal activity for wound dressing applications. Reactive and Functional Polymers, 2021, 159, 104808.	4.1	49
272	Effects of different processing technologies on chemical and antioxidant parameters of Macrolepiota procera wild mushroom. LWT - Food Science and Technology, 2013, 54, 493-499.	5.2	48
273	Exploring the antioxidant potential of Helichrysum stoechas (L.) Moench phenolic compounds for cosmetic applications: Chemical characterization, microencapsulation and incorporation into a moisturizer. Industrial Crops and Products, 2014, 53, 330-336.	5.2	48
274	Edible Flowers of Tagetes erecta L. as Functional Ingredients: Phenolic Composition, Antioxidant and Protective Effects on Caenorhabditis elegans. Nutrients, 2018, 10, 2002.	4.1	48
275	Valorization of Mushroom By-Products as a Source of Value-Added Compounds and Potential Applications. Molecules, 2020, 25, 2672.	3.8	48
276	Effects of gamma irradiation on physical parameters of Lactarius deliciosus wild edible mushrooms. Postharvest Biology and Technology, 2012, 74, 79-84.	6.0	47
277	Chemical characterization of Ginkgo biloba L. and antioxidant properties of its extracts and dietary supplements. Industrial Crops and Products, 2013, 51, 244-248.	5.2	47
278	Nutritional Value, Chemical Composition and Cytotoxic Properties of Common Purslane (Portulaca) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5
279	Antioxidant Potential of Chestnut (Castanea sativa L.) and Almond (Prunus dulcis L.) By-products. Food Science and Technology International, 2010, 16, 209-216.	2.2	46
280	Chemical characterization and bioactive properties of two aromatic plants: Calendula officinalis L. (flowers) and Mentha cervina L. (leaves). Food and Function, 2016, 7, 2223-2232.	4.6	46
281	Fatty acids profiles of some Spanish wild vegetables. Food Science and Technology International, 2012, 18, 281-290.	2.2	45
282	Antibacterial Potential of Northeastern Portugal Wild Plant Extracts and Respective Phenolic Compounds. BioMed Research International, 2014, 2014, 1-8.	1.9	45
283	Nutritional Value, Chemical Characterization and Bulb Morphology of Greek Garlic Landraces. Molecules, 2018, 23, 319.	3.8	45
284	Chemical characterization of Agaricus bohusii, antioxidant potential and antifungal preserving properties when incorporated in cream cheese. Food Research International, 2012, 48, 620-626.	6.2	44
285	<i>Castanea sativa</i> Mill. Flowers amongst the Most Powerful Antioxidant Matrices: A Phytochemical Approach in Decoctions and Infusions. BioMed Research International, 2014, 2014, 1-7.	1.9	44
286	Docking Studies in Target Proteins Involved in Antibacterial Action Mechanisms: Extending the Knowledge on Standard Antibiotics to Antimicrobial Mushroom Compounds. Molecules, 2014, 19, 1672-1684.	3.8	44
287	Plants used in folk medicine: The potential of their hydromethanolic extracts against Candida species. Industrial Crops and Products, 2015, 66, 62-67.	5.2	44

288Porphyrin dye into biopolymeric chitosan films for localized photodynamic therapy of cancer.
Carbohydrate Polymers, 2016, 151, 160-171.10.244

#	Article	IF	CITATIONS
289	Effects of in vitro gastrointestinal digestion and colonic fermentation on a rosemary (Rosmarinus) Tj ETQq1 1 0.	784314 r	gBT ₄ 4 Verlock
290	Chemical composition and bioactive properties of byproducts from two different kiwi varieties. Food Research International, 2020, 127, 108753.	6.2	44
291	Biostimulants Application Alleviates Water Stress Effects on Yield and Chemical Composition of Greenhouse Green Bean (Phaseolus vulgaris L.). Agronomy, 2020, 10, 181.	3.0	44
292	Extensional flow-based microfluidic device: deformability assessment of red blood cells in contact with tumor cells. Biochip Journal, 2014, 8, 42-47.	4.9	43
293	Wild Mushroom Extracts as Inhibitors of Bacterial Biofilm Formation. Pathogens, 2014, 3, 667-679.	2.8	43
294	Biological activities and chemical constituents of Araucaria angustifolia : An effort to recover a species threatened by extinction. Trends in Food Science and Technology, 2016, 54, 85-93.	15.1	43
295	The emerging use of mycosterols in food industry along with the current trend of extended use of bioactive phytosterols. Trends in Food Science and Technology, 2017, 67, 19-35.	15.1	43
296	Phenolic profile and bioactivity of cardoon (Cynara cardunculus L.) inflorescence parts: Selecting the best genotype for food applications. Food Chemistry, 2018, 268, 196-202.	8.2	43
297	Phenolic compounds profile, nutritional compounds and bioactive properties of Lycium barbarum L.: A comparative study with stems and fruits. Industrial Crops and Products, 2018, 122, 574-581.	5.2	43
298	Synthesis and antimicrobial activity studies of ortho-chlorodiarylamines and heteroaromatic tetracyclic systems in the benzo[b]thiophene series. Bioorganic and Medicinal Chemistry, 2006, 14, 6827-6831.	3.0	42
299	HPLC-DAD-ESI/MS identification of anthocyanins in Dioscorea trifida L. yam tubers (purple sachapapa). European Food Research and Technology, 2010, 230, 745-752.	3.3	42
300	Supervised Chemical Pattern Recognition in Almond (Prunus dulcis) Portuguese PDO Cultivars: PCA- and LDA-Based Triennial Study. Journal of Agricultural and Food Chemistry, 2012, 60, 9697-9704.	5.2	42
301	Study of chemical changes and antioxidant activity variation induced by gamma-irradiation on wild mushrooms: Comparative study through principal component analysis. Food Research International, 2013, 54, 18-25.	6.2	42
302	Antioxidant potential of two Apiaceae plant extracts: A comparative study focused on the phenolic composition. Industrial Crops and Products, 2016, 79, 188-194.	5.2	42
303	Effects of in vitro digestion and in vitro colonic fermentation on stability and functional properties of yerba mate (llex paraguariensis A. St. Hil.) beverages. Food Chemistry, 2017, 237, 453-460.	8.2	42
304	Effectiveness of gamma and electron beam irradiation as preserving technologies of fresh Agaricus bisporus Portobello: A comparative study. Food Chemistry, 2019, 278, 760-766.	8.2	42
305	Potential anti-diabetic properties of Merlot grape pomace extract: An in vitro, in silico and in vivo study of α-amylase and α-glucosidase inhibition. Food Research International, 2020, 137, 109462.	6.2	42
306	Tirmania pinoyi: Chemical composition, in vitro antioxidant and antibacterial activities and in situ control of Staphylococcus aureus in chicken soup. Food Research International, 2013, 53, 56-62.	6.2	41

#	Article	IF	CITATIONS
307	Analysis of organic acids in electron beam irradiated chestnuts (Castanea sativa Mill.): Effects of radiation dose and storage time. Food and Chemical Toxicology, 2013, 55, 348-352.	3.6	41
308	Chemical Characterization and Antioxidant Potential of Wild Ganoderma Species from Ghana. Molecules, 2017, 22, 196.	3.8	41
309	Phytochemical composition, health effects, and crop management of liquorice (<i>Clycyrrhiza) Tj ETQq1 1 0.784</i>	-314 rgBT , 8.4	Overlock 10
310	Nutritional, chemical and bioactive profiles of different parts of a Portuguese common fig (Ficus) Tj ETQq0 0 0 rg	BT /Overlc 6.2	ock 10 Tf 50 (41
311	Phenolic profile, antioxidant and antibacterial properties of Juglans regia L. (walnut) leaves from the Northeast of Portugal. Industrial Crops and Products, 2019, 134, 347-355.	5.2	41
312	Valorisation of black mulberry and grape seeds: Chemical characterization and bioactive potential. Food Chemistry, 2021, 337, 127998.	8.2	41
313	Palladium-Catalysed Amination of Electron-Deficient or Relatively Electron-Rich Benzo[b]thienyl Bromidesâ^' Preliminary Studies of Antimicrobial Activity and SARs. European Journal of Organic Chemistry, 2004, 2004, 3679-3685.	2.4	40
314	Gamma irradiation improves the extractability of phenolic compounds in Ginkgo biloba L Industrial Crops and Products, 2015, 74, 144-149.	5.2	40
315	Bioactive properties and phenolic profile of Momordica charantia L. medicinal plant growing wild in Trinidad and Tobago. Industrial Crops and Products, 2017, 95, 365-373.	5.2	40
316	Phytochemical analysis and assessment of antioxidant, antimicrobial, anti-inflammatory and cytotoxic properties of Tetraclinis articulata (Vahl) Masters leaves. Industrial Crops and Products, 2018, 112, 460-466.	5.2	40
317	Recovery of bioactive compounds from Arbutus unedo L. fruits: Comparative optimization study of maceration/microwave/ultrasound extraction techniques. Food Research International, 2018, 109, 455-471.	6.2	40
318	Bioactivities, chemical composition and nutritional value of Cynara cardunculus L. seeds. Food Chemistry, 2019, 289, 404-412.	8.2	40
319	Novel synthetic routes to thienocarbazoles via palladium or copper catalyzed amination or amidation of arylhalides and intramolecular cyclization. Tetrahedron, 2002, 58, 7943-7949.	1.9	39
320	Synthesis and antioxidant activity evaluation of new 7-aryl or 7-heteroarylamino-2,3-dimethylbenzo[b]thiophenes obtained by Buchwald–Hartwig C–N cross-coupling. Bioorganic and Medicinal Chemistry, 2007, 15, 1788-1794.	3.0	39
321	A comparative study on edible Agaricus mushrooms as functional foods. Food and Function, 2015, 6, 1900-1910.	4.6	39
322	Chemical and Antioxidant Properties of Wild Edible Mushrooms from Native Nothofagus spp. Forest, Argentina. Molecules, 2016, 21, 1201.	3.8	39
323	Suitability of gamma irradiation for preserving fresh-cut watercress quality during cold storage. Food Chemistry, 2016, 206, 50-58.	8.2	39
324	Basil as functional and preserving ingredient in "Serra da Estrela―cheese. Food Chemistry, 2016, 207, 51-59.	8.2	39

#	Article	IF	CITATIONS
325	Bioactive evaluation and application of different formulations of the natural colorant curcumin (E100) in a hydrophilic matrix (yogurt). Food Chemistry, 2018, 261, 224-232.	8.2	39
326	Health Benefits of Nut Consumption in Middle-Aged and Elderly Population. Antioxidants, 2019, 8, 302.	5.1	39
327	Detailed chemical composition and functional properties of Ammodaucus leucotrichus Cross. & Dur. and Moringa oleifera Lamarck. Journal of Functional Foods, 2019, 53, 237-247.	3.4	39
328	Ficus carica L. and Prunus spinosa L. extracts as new anthocyanin-based food colorants: A thorough study in confectionery products. Food Chemistry, 2020, 333, 127457.	8.2	39
329	Screening of antimicrobial activity of diarylamines in the 2,3,5-trimethylbenzo[b]thiophene series: a structure–activity evaluation study. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 5831-5833.	2.2	38
330	Vitamin E Profile as a Reliable Authenticity Discrimination Factor between Chestnut (Castanea sativa) Tj ETQq0 C) 0 <u>rg</u> BT /C	veglock 10 Tf
331	QSAR model for predicting radical scavenging activity of di(hetero)arylamines derivatives of benzo[b]thiophenes. European Journal of Medicinal Chemistry, 2009, 44, 1952-1958.	5.5	38
332	Suillus collinitus methanolic extract increases p53 expression and causes cell cycle arrest and apoptosis in a breast cancer cell line. Food Chemistry, 2012, 135, 596-602.	8.2	38
333	Clitocybe alexandri extract induces cell cycle arrest and apoptosis in a lung cancer cell line: Identification of phenolic acids with cytotoxic potential. Food Chemistry, 2012, 132, 482-486.	8.2	38
334	Wild Fragaria vesca L. fruits: a rich source of bioactive phytochemicals. Food and Function, 2016, 7, 4523-4532.	4.6	38
335	Plant phenolic extracts as an effective strategy to control Staphylococcus aureus , the dairy industry pathogen. Industrial Crops and Products, 2018, 112, 515-520.	5.2	38
336	Flour fortification for nutritional and health improvement: A review. Food Research International, 2019, 125, 108576.	6.2	38
337	Assessing the effects of gamma irradiation and storage time in energetic value and in major individual nutrients of chestnuts. Food and Chemical Toxicology, 2011, 49, 2429-2432.	3.6	37
338	Chemical characterization of chestnut cultivars from three consecutive years: Chemometrics and contribution for authentication. Food and Chemical Toxicology, 2012, 50, 2311-2317.	3.6	37
339	Effects of Gamma Irradiation on the Chemical Composition and Antioxidant Activity of Lactarius deliciosus L. Wild Edible Mushroom. Food and Bioprocess Technology, 2013, 6, 2895-2903.	4.7	37
340	Phytochemical characterization and antioxidant activity of Opuntia microdasys (Lehm.) Pfeiff flowers in different stages of maturity. Journal of Functional Foods, 2014, 9, 27-37.	3.4	37
341	Nutritional profile and chemical composition of Cichorium spinosum ecotypes. LWT - Food Science and Technology, 2016, 73, 95-101.	5.2	37
342	Effect of gamma irradiation and extended storage on selected chemical constituents and antioxidant activities of sliced mushroom. Food Control, 2017, 72, 328-337.	5.5	37

#	Article	IF	CITATIONS
343	Successive harvesting affects yield, chemical composition and antioxidant activity of Cichorium spinosum L Food Chemistry, 2017, 237, 83-90.	8.2	37
344	A new variety of purple tomato as a rich source of bioactive carotenoids and its potential health benefits. Heliyon, 2019, 5, e02831.	3.2	37
345	Comparison of different bread types: Chemical and physical parameters. Food Chemistry, 2020, 310, 125954.	8.2	37
346	Methanolic Extract of Ganoderma lucidum Induces Autophagy of AGS Human Gastric Tumor Cells. Molecules, 2015, 20, 17872-17882.	3.8	36
347	Seeds of Opuntia spp. as a novel high potential by-product: Phytochemical characterization and antioxidant activity. Industrial Crops and Products, 2015, 65, 383-389.	5.2	36
348	Effects of gamma irradiation on cytotoxicity and phenolic compounds of Thymus vulgaris L. and MenthaÂxApiperita L LWT - Food Science and Technology, 2016, 71, 370-377.	5.2	36
349	Wild <i>Morchella conica</i> Pers. from different origins: a comparative study of nutritional and bioactive properties. Journal of the Science of Food and Agriculture, 2016, 96, 90-98.	3.5	36
350	Cottage cheeses functionalized with fennel and chamomile extracts: Comparative performance between free and microencapsulated forms. Food Chemistry, 2016, 199, 720-726.	8.2	36
351	Contribution of the phenolic composition to the antioxidant, anti-inflammatory and antitumor potential of Equisetum giganteum L. and Tilia platyphyllos Scop Food and Function, 2017, 8, 975-984.	4.6	36
352	Phytochemical content and antioxidant activity of grapefruit (Star Ruby): A comparison between fresh freeze-dried fruits and different powder formulations. LWT - Food Science and Technology, 2017, 80, 106-112.	5.2	36
353	Ultrasound and Microwave Assisted Extraction of Opuntia Fruit Peels Biocompounds: Optimization and Comparison Using RSM-CCD. Molecules, 2019, 24, 3618.	3.8	36
354	<i>Calluna vulgaris</i> (L.) Hull: chemical characterization, evaluation of its bioactive properties and effect on the vaginal microbiota. Food and Function, 2019, 10, 78-89.	4.6	36
355	Phenolic acids, cinnamic acid, and ergosterol as cosmeceutical ingredients: Stabilization by microencapsulation to ensure sustained bioactivity. Microchemical Journal, 2019, 147, 469-477.	4.5	36
356	Camphor and Eucalyptol—Anticandidal Spectrum, Antivirulence Effect, Efflux Pumps Interference and Cytotoxicity. International Journal of Molecular Sciences, 2021, 22, 483.	4.1	36
357	Flavones, Flavonols, and Glycosylated Derivatives—Impact on Candida albicans Growth and Virulence, Expression of CDR1 and ERG11, Cytotoxicity. Pharmaceuticals, 2021, 14, 27.	3.8	36
358	Chemical composition and biological activities of whole and dehulled hemp (Cannabis sativa L.) seeds. Food Chemistry, 2022, 374, 131754.	8.2	36
359	Synthesis of diarylamines in the benzo[b]thiophene series bearing electron donating or withdrawing groups by Buchwald–Hartwig C–N coupling. Tetrahedron, 2003, 59, 975-981.	1.9	35
360	Nutritional and nutraceutical potential of rape (Brassica napus L. var. napus) and "tronchuda― cabbage (Brassica oleraceae L. var. costata) inflorescences. Food and Chemical Toxicology, 2011, 49, 1208-1214.	3.6	35

#	Article	IF	CITATIONS
361	Anthocyanin and phenolic characterization, chemical composition and antioxidant activity of chagalapoli (Ardisia compressa K.) fruit: A tropical source of natural pigments. Food Research International, 2015, 70, 151-157.	6.2	35
362	Gamma irradiation as a practical alternative to preserve the chemical and bioactive wholesomeness of widely used aromatic plants. Food Research International, 2015, 67, 338-348.	6.2	35
363	Modern extraction techniques optimized to extract betacyanins from Gomphrena globosa L Industrial Crops and Products, 2017, 105, 29-40.	5.2	35
364	Leaf parts from Greek artichoke genotypes as a good source of bioactive compounds and antioxidants. Food and Function, 2017, 8, 2022-2029.	4.6	35
365	Chemical characterization and <i>in vitro</i> colonic fermentation of grape pomace extracts. Journal of the Science of Food and Agriculture, 2017, 97, 3433-3444.	3.5	35
366	Anthocyanin Profile of Elderberry Juice: A Natural-Based Bioactive Colouring Ingredient with Potential Food Application. Molecules, 2019, 24, 2359.	3.8	35
367	Viola cornuta and Viola x wittrockiana: Phenolic compounds, antioxidant and neuroprotective activities on Caenorhabditis elegans. Journal of Food and Drug Analysis, 2019, 27, 849-859.	1.9	35
368	Benefits of tree nut consumption on aging and age-related diseases: Mechanisms of actions. Trends in Food Science and Technology, 2019, 88, 104-120.	15.1	35
369	The Effects of Biostimulants, Biofertilizers and Water-Stress on Nutritional Value and Chemical Composition of Two Spinach Genotypes (Spinacia oleracea L.). Molecules, 2019, 24, 4494.	3.8	35
370	Formulation of mayonnaises containing PUFAs by the addition of microencapsulated chia seeds, pumpkin seeds and baru oils. Food Chemistry, 2019, 274, 220-227.	8.2	35
371	Influence of gamma irradiation in the antioxidant potential of chestnuts (Castanea sativa Mill.) fruits and skins. Food and Chemical Toxicology, 2011, 49, 1918-1923.	3.6	34
372	Systematic comparison of nutraceuticals and antioxidant potential of cultivated, in vitro cultured and commercial Melissa officinalis samples. Food and Chemical Toxicology, 2012, 50, 1866-1873.	3.6	34
373	Feasibility of electron-beam irradiation to preserve wild dried mushrooms: Effects on chemical composition and antioxidant activity. Innovative Food Science and Emerging Technologies, 2014, 22, 158-166.	5.6	34
374	A methanolic extract of Ganoderma lucidum fruiting body inhibits the growth of a gastric cancer cell line and affects cellular autophagy and cell cycle. Food and Function, 2014, 5, 1389-1394.	4.6	34
375	Valorization of traditional foods: nutritional and bioactive properties of <i>Cicer arietinum</i> L. and <i>Lathyrus sativus</i> L. pulses. Journal of the Science of Food and Agriculture, 2015, 95, 179-185.	3.5	34
376	Extensive profiling of three varieties of Opuntia spp. fruit for innovative food ingredients. Food Research International, 2017, 101, 259-265.	6.2	34
377	Mountain food products: A broad spectrum of market potential to be exploited. Trends in Food Science and Technology, 2017, 67, 12-18.	15.1	34
378	Suitability of lemon balm (Melissa officinalis L.) extract rich in rosmarinic acid as a potential enhancer of functional properties in cupcakes. Food Chemistry, 2018, 250, 67-74.	8.2	34

#	Article	IF	CITATIONS
379	Valorisation of the green waste parts from turnip, radish and wild cardoon: Nutritional value, phenolic profile and bioactivity evaluation. Food Research International, 2019, 126, 108651.	6.2	34
380	Healthy novel gluten-free formulations based on beans, carob fruit and rice: Extrusion effect on organic acids, tocopherols, phenolic compounds and bioactivity. Food Chemistry, 2019, 292, 304-313.	8.2	34
381	Mushroom ethanolic extracts as cosmeceuticals ingredients: Safety and ex vivo skin permeation studies. Food and Chemical Toxicology, 2019, 127, 228-236.	3.6	34
382	Grown to be Blue—Antioxidant Properties and Health Effects of Colored Vegetables. Part I: Root Vegetables. Antioxidants, 2019, 8, 617.	5.1	34
383	Chenopodium quinoa Willd. (quinoa) grains: A good source of phenolic compounds. Food Research International, 2020, 137, 109574.	6.2	34
384	Tandem palladium-catalyzed borylation and Suzuki coupling (BSC) to thienocarbazole precursors. Tetrahedron Letters, 2003, 44, 4327-4329.	1.4	33
385	Synthesis of β-Benzo[b]thienyldehydrophenylalanine Derivatives by One-Pot Palladium-Catalyzed Borylation and Suzuki Coupling (BSC) and Metal-Assisted Intramolecular Cyclization - Studies of Fluorescence and Antimicrobial Activity. European Journal of Organic Chemistry, 2005, 2005, 2951-2957.	2.4	33
386	Effects of oral dosage form and storage period on the antioxidant properties of four species used in traditional herbal medicine. Phytotherapy Research, 2011, 25, 484-492.	5.8	33
387	Optimization of microwave-assisted extraction of hydrophilic and lipophilic antioxidants from a surplus tomato crop by response surface methodology. Food and Bioproducts Processing, 2016, 98, 283-298.	3.6	33
388	Chemical composition and bioactive properties of the wild mushroom Polyporus squamosus (Huds.) Fr: a study with samples from Romania. Food and Function, 2018, 9, 160-170.	4.6	33
389	Antioxidants extraction from Pinhão (Araucaria angustifolia (Bertol.) Kuntze) coats and application to zein films. Food Packaging and Shelf Life, 2018, 15, 28-34.	7.5	33
390	Promising Antioxidant and Antimicrobial Food Colourants from Lonicera caerulea L. var. Kamtschatica. Antioxidants, 2019, 8, 394.	5.1	33
391	Chemical Composition, Nutritional Value, and Biological Evaluation of Tunisian Okra Pods (Abelmoschus esculentus L. Moench). Molecules, 2020, 25, 4739.	3.8	33
392	Secondary metabolites (essential oils) from sand-dune plants induce cytotoxic effects in cancer cells. Journal of Ethnopharmacology, 2020, 258, 112803.	4.1	33
393	Xoconostle fruit (Opuntia matudae Scheinvar cv. Rosa) by-products as potential functional ingredients. Food Chemistry, 2015, 185, 289-297.	8.2	32
394	The Flavone Luteolin Inhibits Liver X Receptor Activation. Journal of Natural Products, 2016, 79, 1423-1428.	3.0	32
395	Chemical composition and antioxidant activity of Cichorium spinosum L. leaves in relation to developmental stage. Food Chemistry, 2018, 239, 946-952.	8.2	32
396	Rubus ulmifolius Schott fruits: A detailed study of its nutritional, chemical and bioactive properties. Food Research International, 2019, 119, 34-43.	6.2	32

#	Article	IF	CITATIONS
397	Fighting Iron-Deficiency Anemia: Innovations in Food Fortificants and Biofortification Strategies. Foods, 2020, 9, 1871.	4.3	32
398	Soy Protein Isolate Films Incorporated with Pinhão (Araucaria angustifolia (Bertol.) Kuntze) Extract for Potential Use as Edible Oil Active Packaging. Food and Bioprocess Technology, 2020, 13, 998-1008.	4.7	32
399	Laccases in food processing: Current status, bottlenecks and perspectives. Trends in Food Science and Technology, 2021, 115, 445-460.	15.1	32
400	Aromatic plants as a source of important phytochemicals: Vitamins, sugars and fatty acids in Cistus ladanifer, Cupressus lusitanica and Eucalyptus gunnii leaves. Industrial Crops and Products, 2009, 30, 427-430.	5.2	31
401	Phenolic profiling of Veronica spp. grown in mountain, urban and sandy soil environments. Food Chemistry, 2014, 163, 275-283.	8.2	31
402	Nutritional parameters of infusions and decoctions obtained from Fragaria vesca L. roots and vegetative parts. LWT - Food Science and Technology, 2015, 62, 32-38.	5.2	31
403	A Comparison of the Nutritional Contribution of Thirty-nine Aromatic Plants used as Condiments and/or Herbal Infusions. Plant Foods for Human Nutrition, 2015, 70, 176-183.	3.2	31
404	In vitro macrophage nitric oxide production by Pterospartum tridentatum (L.) Willk. inflorescence polysaccharides. Carbohydrate Polymers, 2017, 157, 176-184.	10.2	31
405	Is Gamma Radiation Suitable to Preserve Phenolic Compounds and to Decontaminate Mycotoxins in Aromatic Plants? A Case-Study with Aloysia citrodora Paláu. Molecules, 2017, 22, 347.	3.8	31
406	Stability of a cyanidin-3-O-glucoside extract obtained from Arbutus unedo L. and incorporation into wafers for colouring purposes. Food Chemistry, 2019, 275, 426-438.	8.2	31
407	Valorisation of table tomato crop by-products: Phenolic profiles and in vitro antioxidant and antimicrobial activities. Food and Bioproducts Processing, 2020, 124, 307-319.	3.6	31
408	Anthocyanin-rich extracts from purple and red potatoes as natural colourants: Bioactive properties, application in a soft drink formulation and sensory analysis. Food Chemistry, 2021, 342, 128526.	8.2	31
409	Synthesis of pure stereoisomers of benzo[b]thienyl dehydrophenylalanines by Suzuki cross-coupling. Preliminary studies of antimicrobial activity. Tetrahedron, 2004, 60, 11821-11828.	1.9	30
410	Dietary antioxidant supplements: Benefits of their combined use. Food and Chemical Toxicology, 2011, 49, 3232-3237.	3.6	30
411	Effects of gamma irradiation on chemical composition and antioxidant potential of processed samples of the wild mushroom Macrolepiota procera. Food Chemistry, 2014, 149, 91-98.	8.2	30
412	Study on chemical, bioactive and food preserving properties of <i>Laetiporus sulphureus</i> (Bull.: Fr.) Murr Food and Function, 2014, 5, 1441-1451.	4.6	30
413	Chemical composition, antioxidant activity and bioaccessibility studies in phenolic extracts of two Hericium wild edible species. LWT - Food Science and Technology, 2015, 63, 475-481.	5.2	30
414	Ultrasound as a Rapid and Low-Cost Extraction Procedure to Obtain Anthocyanin-Based Colorants from Prunus spinosa L. Fruit Epicarp: Comparative Study with Conventional Heat-Based Extraction. Molecules, 2019, 24, 573.	3.8	30

#	Article	IF	CITATIONS
415	Chemical composition and biological activities of Juçara (Euterpe edulis Martius) fruit by-products, a promising underexploited source of high-added value compounds. Journal of Functional Foods, 2019, 55, 325-332.	3.4	30
416	Cytotoxicity of Portuguese Propolis: The Proximity of the <i>In Vitro</i> Doses for Tumor and Normal Cell Lines. BioMed Research International, 2014, 2014, 1-7.	1.9	29
417	Exploring xoconostle by-products as sources of bioactive compounds. Food Research International, 2014, 65, 437-444.	6.2	29
418	Postharvest quality changes in fresh-cut watercress stored under conventional and inert gas-enriched modified atmosphere packaging. Postharvest Biology and Technology, 2016, 112, 55-63.	6.0	29
419	Chemical composition of the mushroom Meripilus giganteus Karst. and bioactive properties of its methanolic extract. LWT - Food Science and Technology, 2017, 79, 454-462.	5.2	29
420	Profiling polyphenol composition by HPLC-DAD-ESI/MSn and the antibacterial activity of infusion preparations obtained from four medicinal plants. Food and Function, 2018, 9, 149-159.	4.6	29
421	The influence of electron beam radiation in the nutritional value, chemical composition and bioactivities of edible flowers of Bauhinia variegata L. var. candida alba BuchHam from Brazil. Food Chemistry, 2018, 241, 163-170.	8.2	29
422	Characterization of phenolic compounds in tincture of edible <i>Nepeta nuda</i> : development of antimicrobial mouthwash. Food and Function, 2018, 9, 5417-5425.	4.6	29
423	A Comparative Study of Black and White Allium sativum L.: Nutritional Composition and Bioactive Properties. Molecules, 2019, 24, 2194.	3.8	29
424	Chemical composition, anti-inflammatory activity and cytotoxicity of Thymus zygis L. subsp. sylvestris (Hoffmanns. & Link) Cout. essential oil and its main compounds. Arabian Journal of Chemistry, 2019, 12, 3236-3243.	4.9	29
425	Potential Health Claims of Durum and Bread Wheat Flours as Functional Ingredients. Nutrients, 2020, 12, 504.	4.1	29
426	Wild and Cultivated Centaurea raphanina subsp. mixta: A Valuable Source of Bioactive Compounds. Antioxidants, 2020, 9, 314.	5.1	29
427	Effects of gamma radiation on the biological, physico-chemical, nutritional and antioxidant parameters of chestnuts – A review. Food and Chemical Toxicology, 2012, 50, 3234-3242.	3.6	28
428	Cytotoxicity of Coprinopsis atramentaria extract, organic acids and their synthesized methylated and glucuronate derivatives. Food Research International, 2014, 55, 170-175.	6.2	28
429	Irradiation as a novel approach to improve quality of Tropaeolum majus L. flowers: Benefits in phenolic profiles and antioxidant activity. Innovative Food Science and Emerging Technologies, 2015, 30, 138-144.	5.6	28
430	Mentha spicata L. infusions as sources of antioxidant phenolic compounds: emerging reserve lots with special harvest requirements. Food and Function, 2016, 7, 4188-4192.	4.6	28
431	Polyporus squamosus (Huds.) Fr from different origins: Chemical characterization, screening of the bioactive properties and specific antimicrobial effects against Pseudomonas aeruginosa. LWT - Food Science and Technology, 2016, 69, 91-97.	5.2	28
432	A comparison of the phenolic profile and antioxidant activity of different <i>Cichorium spinosum</i> L. ecotypes. Journal of the Science of Food and Agriculture, 2018, 98, 183-189.	3.5	28

#	Article	IF	CITATIONS
433	Arbutus unedo L. and Ocimum basilicum L. as sources of natural preservatives for food industry: A case study using loaf bread. LWT - Food Science and Technology, 2018, 88, 47-55.	5.2	28
434	The nanoencapsulation of curcuminoids extracted from <i>Curcuma longa</i> L. and an evaluation of their cytotoxic, enzymatic, antioxidant and anti-inflammatory activities. Food and Function, 2019, 10, 573-582.	4.6	28
435	Chemical composition and bioactive properties of <i>Sanguisorba minor</i> Scop. under Mediterranean growing conditions. Food and Function, 2019, 10, 1340-1351.	4.6	28
436	Chemical composition and bioactive properties of the wild edible plant Raphanus raphanistrum L. Food Research International, 2019, 121, 714-722.	6.2	28
437	Extraction of Anthocyanins from Red Raspberry for Natural Food Colorants Development: Processes Optimization and In Vitro Bioactivity. Processes, 2020, 8, 1447.	2.8	28
438	Echinacea purpurea (L.) Moench: Chemical Characterization and Bioactivity of Its Extracts and Fractions. Pharmaceuticals, 2020, 13, 125.	3.8	28
439	<i>Leucopaxillus giganteus</i> Mycelium: Effect of Nitrogen Source on Organic Acids and Alkaloids . Journal of Agricultural and Food Chemistry, 2008, 56, 4769-4774.	5.2	27
440	Comparative effects of gamma and electron beam irradiation on the antioxidant potential of Portuguese chestnuts (Castanea sativa Mill.). Food and Chemical Toxicology, 2012, 50, 3452-3455.	3.6	27
441	Effects of Electron-Beam Radiation on Nutritional Parameters of Portuguese Chestnuts (Castanea) Tj ETQq1 1 0	.784314 r 5.2	gBT_/Overlock
442	Selective Flexibility of Sideâ€Chain Residues Improves VEGFRâ€2 Docking Score using AutoDock Vina. Chemical Biology and Drug Design, 2012, 79, 530-534.	3.2	27
443	Propensity for biofilm formation by clinical isolates from urinary tract infections: developing a multifactorial predictive model to improve antibiotherapy. Journal of Medical Microbiology, 2014, 63, 471-477.	1.8	27
444	Characterization of a Squaraine/Chitosan System for Photodynamic Therapy of Cancer. Journal of Physical Chemistry B, 2016, 120, 1212-1220.	2.6	27
445	Extended use of gamma irradiation in wild mushrooms conservation: Validation of 2ÂkGy dose to preserve their chemical characteristics. LWT - Food Science and Technology, 2016, 67, 99-105.	5.2	27
446	Magnetoliposomes as carriers for promising antitumor thieno[3,2-b]pyridin-7-arylamines: photophysical and biological studies. RSC Advances, 2017, 7, 15352-15361.	3.6	27
447	The chemical composition, nutritional value and antimicrobial properties of <i>Abelmoschus esculentus </i> seeds. Food and Function, 2017, 8, 4733-4743.	4.6	27
448	Systematic study on the extraction of antioxidants from pinhão (araucaria angustifolia (bertol.)) Tj ETQq0 0 0	rgBT /Ove 8.2	erlo <u>ck</u> 10 Tf 50
449	Bioactive compounds and antioxidant capacity of extruded snack-type products developed from novel formulations of lentil and nutritional yeast flours. Food and Function, 2018, 9, 819-829.	4.6	27
450	Nutrient solution composition and growing season affect yield and chemical composition of	3.6	27

Cichorium spinosum plants. Scientia Horticulturae, 2018, 231, 97-107. 450

#	Article	IF	CITATIONS
451	Magnetoliposomes Containing Calcium Ferrite Nanoparticles for Applications in Breast Cancer Therapy. Pharmaceutics, 2019, 11, 477.	4.5	27
452	The effect of covering material on the yield, quality and chemical composition of greenhouseâ€grown tomato fruit. Journal of the Science of Food and Agriculture, 2019, 99, 3057-3068.	3.5	27
453	Bioactive properties of Sanguisorba minor L. cultivated in central Greece under different fertilization regimes. Food Chemistry, 2020, 327, 127043.	8.2	27
454	Optimized ultrasound-assisted extraction of phenolic compounds from Thymus comosus Heuff. ex Griseb. et Schenk (wild thyme) and their bioactive potential. Ultrasonics Sonochemistry, 2022, 84, 105954.	8.2	27
455	Development of hydrosoluble gels with Crataegus monogyna extracts for topical application: Evaluation of antioxidant activity of the final formulations. Industrial Crops and Products, 2013, 42, 175-180.	5.2	26
456	Antimicrobial and cytotoxic activities of Alnus rugosa L. aerial parts and identification of the bioactive components. Industrial Crops and Products, 2014, 59, 189-196.	5.2	26
457	Phenolic profile and antioxidant properties of commercial and wild Fragaria vesca L. roots: A comparison between hydromethanolic and aqueous extracts. Industrial Crops and Products, 2015, 63, 125-132.	5.2	26
458	Multifunctions of Pleurotus sajor-caju (Fr.) Singer: A highly nutritious food and a source for bioactive compounds. Food Chemistry, 2018, 245, 150-158.	8.2	26
459	How extraction method affects yield, fatty acids composition and bioactive properties of cardoon seed oil?. Industrial Crops and Products, 2018, 124, 459-465.	5.2	26
460	Exploiting the bioactive properties of γ-oryzanol from bran of different exotic rice varieties. Food and Function, 2019, 10, 2382-2389.	4.6	26
461	<i>Araucaria angustifolia</i> (Bertol.) Kuntze extract as a source of phenolic compounds in TPS/PBAT active films. Food and Function, 2019, 10, 7697-7706.	4.6	26
462	Recovery of Anthocyanins from Passion Fruit Epicarp for Food Colorants: Extraction Process Optimization and Evaluation of Bioactive Properties. Molecules, 2020, 25, 3203.	3.8	26
463	Nutritional and phytochemical profiles and biological activities of Moringa oleifera Lam. edible parts from Guinea-Bissau (West Africa). Food Chemistry, 2021, 341, 128229.	8.2	26
464	Exquisite wild mushrooms as a source of dietary fiber: Analysis in electron-beam irradiated samples. LWT - Food Science and Technology, 2015, 60, 855-859.	5.2	25
465	In vitro anti-Candida activity of Glycyrrhiza glabra L Industrial Crops and Products, 2016, 83, 81-85.	5.2	25
466	Degradation of phenolic acids by gamma radiation as model compounds of cork wastewaters. Chemical Engineering Journal, 2018, 341, 227-237.	12.7	25
467	Achillea millefolium L. hydroethanolic extract inhibits growth of human tumor cell lines by interfering with cell cycle and inducing apoptosis. Food and Chemical Toxicology, 2018, 118, 635-644.	3.6	25
468	Nanodispersions of beta-carotene: effects on antioxidant enzymes and cytotoxic properties. Food and Function, 2018, 9, 3698-3706.	4.6	25

#	Article	IF	CITATIONS
469	Hydroethanolic extract of Juglans regia L. green husks: A source of bioactive phytochemicals. Food and Chemical Toxicology, 2020, 137, 111189.	3.6	25
470	Red Seaweeds as a Source of Nutrients and Bioactive Compounds: Optimization of the Extraction. Chemosensors, 2021, 9, 132.	3.6	25
471	Low Dose Î ³ -Irradiation As a Suitable Solution for Chestnut (<i>Castanea sativa</i> Miller) Conservation: Effects on Sugars, Fatty Acids, and Tocopherols. Journal of Agricultural and Food Chemistry, 2011, 59, 10028-10033.	5.2	24
472	Comparative Study of Lipophilic and Hydrophilic Antioxidants from In vivo and In vitro Grown Coriandrum sativum. Plant Foods for Human Nutrition, 2011, 66, 181-186.	3.2	24
473	Vaccines and biologics: TableÂ1. Annals of the Rheumatic Diseases, 2014, 73, 1446-1454.	0.9	24
474	Phytochemical composition and biological activities of Geranium robertianum L.: A review. Industrial Crops and Products, 2016, 87, 363-378.	5.2	24
475	Water soluble compounds of <i>Rosmarinus officinalis</i> L. improve the oxidative and inflammatory states of rats with adjuvant-induced arthritis. Food and Function, 2018, 9, 2328-2340.	4.6	24
476	<i>Melissa officinalis</i> L. ethanolic extract inhibits the growth of a lung cancer cell line by interfering with the cell cycle and inducing apoptosis. Food and Function, 2018, 9, 3134-3142.	4.6	24
477	Microencapsulation of ergosterol and Agaricus bisporus L. extracts by complex coacervation using whey protein and chitosan: Optimization study using response surface methodology. LWT - Food Science and Technology, 2019, 103, 228-237.	5.2	24
478	Satureja montana L. and Origanum majorana L. Decoctions: Antimicrobial Activity, Mode of Action and Phenolic Characterization. Antibiotics, 2020, 9, 294.	3.7	24
479	Characterisation of polyphenols by HPLC-PAD-ESI/MS and antioxidant activity inEquisetum telmateia. Phytochemical Analysis, 2005, 16, 380-387.	2.4	23
480	In search of synergistic effects in antioxidant capacity of combined edible mushrooms. International Journal of Food Sciences and Nutrition, 2009, 60, 160-172.	2.8	23
481	A comparative study of tocopherols composition and antioxidant properties of in vivo and in vitro ectomycorrhizal fungi. LWT - Food Science and Technology, 2011, 44, 820-824.	5.2	23
482	New di(hetero)arylethers and di(hetero)arylamines in the thieno[3,2-b]pyridine series: Synthesis, growth inhibitory activity on human tumor cell lines and non-tumor cells, effects on cell cycle and on programmed cell death. European Journal of Medicinal Chemistry, 2013, 69, 855-862.	5.5	23
483	Wild mushroom extracts potentiate the action of standard antibiotics against multiresistant bacteria. Journal of Applied Microbiology, 2014, 116, 32-38.	3.1	23
484	Bioactive composition, antimicrobial activities and the influence of Agrocybe aegerita (Brig.) Sing on certain quorum-sensing-regulated functions and biofilm formation by Pseudomonas aeruginosa. Food and Function, 2014, 5, 3296-3303.	4.6	23
485	Phytochemical characterization and antioxidant activity of the cladodes of Opuntia macrorhiza (Engelm.) and Opuntia microdasys (Lehm.). Food and Function, 2014, 5, 2129-2136.	4.6	23
486	Dietary fiber, mineral elements profile and macronutrients composition in different edible parts of Opuntia microdasys (Lehm.) Pfeiff and Opuntia macrorhiza (Engelm.). LWT - Food Science and Technology, 2015, 64, 446-451.	5.2	23

#	Article	IF	CITATIONS
487	Infusions of artichoke and milk thistle represent a good source of phenolic acids and flavonoids. Food and Function, 2015, 6, 55-61.	4.6	23
488	Ceratonia siliqua L. hydroethanolic extract obtained by ultrasonication: antioxidant activity, phenolic compounds profile and effects in yogurts functionalized with their free and microencapsulated forms. Food and Function, 2016, 7, 1319-1328.	4.6	23
489	Development of dairy beverages functionalized with pure ergosterol and mycosterol extracts: an alternative to phytosterol-based beverages. Food and Function, 2017, 8, 103-110.	4.6	23
490	A comparative study between conventional and non-conventional extraction techniques for the recovery of ergosterol from Agaricus blazei Murrill. Food Research International, 2019, 125, 108541.	6.2	23
491	Rubus ulmifolius Schott as a Novel Source of Food Colorant: Extraction Optimization of Coloring Pigments and Incorporation in a Bakery Product. Molecules, 2019, 24, 2181.	3.8	23
492	<i>Ocimum basilicum</i> var. <i>purpurascens</i> leaves (red rubin basil): a source of bioactive compounds and natural pigments for the food industry. Food and Function, 2019, 10, 3161-3171.	4.6	23
493	Exploring the chemical and bioactive properties of <i>Hibiscus sabdariffa</i> L. calyces from Guinea-Bissau (West Africa). Food and Function, 2019, 10, 2234-2243.	4.6	23
494	Nutritional value, physicochemical characterization and bioactive properties of the Brazilian quinoa <i>BRS Piabiru</i> . Food and Function, 2020, 11, 2969-2977.	4.6	23
495	By-Products of Camu-Camu [Myrciaria dubia (Kunth) McVaugh] as Promising Sources of Bioactive High Added-Value Food Ingredients: Functionalization of Yogurts. Molecules, 2020, 25, 70.	3.8	23
496	Phenolic composition and cell-based biological activities of ten coloured potato peels (Solanum) Tj ETQq0 0 0 r	gBT /Qverlo 8.2	ock 10 Tf 50 3
497	Chemical composition and biological activity of cardoon (Cynara cardunculus L. var. altilis) seeds harvested at different maturity stages. Food Chemistry, 2022, 369, 130875.	8.2	23
498	Chemometric characterization of gamma irradiated chestnuts from Turkey. Radiation Physics and Chemistry, 2012, 81, 1520-1524.	2.8	22
499	Chemical characterization of the medicinal mushroom Phellinus linteus (Berkeley & Curtis) Teng and contribution of different fractions to its bioactivity. LWT - Food Science and Technology, 2014, 58, 478-485.	5.2	22
500	Synergisms in antioxidant and anti-hepatocellular carcinoma activities of artichoke, milk thistle and borututu syrups. Industrial Crops and Products, 2014, 52, 709-713.	5.2	22
501	Variety and Harvesting Season Effects on Antioxidant Activity and Vitamins Content of Citrus sinensis Macfad Molecules, 2015, 20, 8287-8302.	3.8	22
502	How does electron beam irradiation dose affect the chemical and antioxidant profiles of wild dried Amanita mushrooms?. Food Chemistry, 2015, 182, 309-315.	8.2	22
503	Nutritional value, chemical composition, antioxidant activity and enrichment of cream cheese with chestnut mushroom Agrocybe aegerita (Brig.) Sing. Journal of Food Science and Technology, 2015, 52, 6711-6718.	2.8	22
504	Different Citrus rootstocks present high dissimilarities in their antioxidant activity and vitamins	3.5	22

504 content according to the ripening stage. Journal of Plant Physiology, 2015, 174, 124-130.

#	Article	IF	CITATIONS
505	Stevia rebaudiana Bertoni cultivated in Portugal: A prospective study of its antioxidant potential in different conservation conditions. Industrial Crops and Products, 2016, 90, 49-55.	5.2	22
506	Infusions from Thymus vulgaris L. treated at different gamma radiation doses: Effects on antioxidant activity and phenolic composition. LWT - Food Science and Technology, 2016, 74, 34-39.	5.2	22
507	Long-term storage effect on chemical composition, nutritional value and quality of Greek onion landrace "Vatikiotiko― Food Chemistry, 2016, 201, 168-176.	8.2	22
508	Assessment of the nitrogen fertilization effect on bioactive compounds of frozen fresh and dried samples of Stevia rebaudiana Bertoni. Food Chemistry, 2018, 243, 208-213.	8.2	22
509	Chemical composition and bioactive properties of <i>Cichorium spinosum</i> L. in relation to nitrate/ammonium nitrogen ratio. Journal of the Science of Food and Agriculture, 2019, 99, 6741-6750.	3.5	22
510	Phenolic composition and antioxidant properties of ex-situ conserved tomato (Solanum lycopersicum) Tj ETQq0	0 0 rgBT / 6.2	Overlock 10
511	Bioactive Properties and Phenolic Compound Profiles of Turnip-Rooted, Plain-Leafed and Curly-Leafed Parsley Cultivars. Molecules, 2020, 25, 5606.	3.8	22
512	Methanolic Extract of the Herb Ononis spinosa L. Is an Antifungal Agent with no Cytotoxicity to Primary Human Cells. Pharmaceuticals, 2020, 13, 78.	3.8	22
513	Seasonal variation in bioactive properties and phenolic composition of cardoon (Cynara cardunculus) Tj ETQq1	1 0.78431 8.2	4 rgBT /Over
514	Sustainable Recovery of Preservative and Bioactive Compounds from Food Industry Bioresidues. Antioxidants, 2021, 10, 1827.	5.1	22
515	From famine plants to tasty and fragrant spices: Three Lamiaceae of general dietary relevance in traditional cuisine of Trás-os-Montes (Portugal). LWT - Food Science and Technology, 2011, 44, 543-548.	5.2	21
516	Beef burger patties incorporated with <i>Boletus edulis</i> extracts: Lipid peroxidation inhibition effects. European Journal of Lipid Science and Technology, 2011, 113, 737-743.	1.5	21
517	Combined Effects of Electron-Beam Irradiation and Storage Time on the Chemical and Antioxidant Parameters of Wild Macrolepiota procera Dried Samples. Food and Bioprocess Technology, 2014, 7, 1606-1617.	4.7	21
518	Infusions and decoctions of Castanea sativa flowers as effective antitumor and antimicrobial matrices. Industrial Crops and Products, 2014, 62, 42-46.	5.2	21
519	The incorporation of plant materials in "Serra da Estrela―cheese improves antioxidant activity without changing the fatty acid profile and visual appearance. European Journal of Lipid Science and Technology, 2015, 117, 1607-1614.	1.5	21
520	Bioactive properties of medicinal plants from the Algerian flora: Selecting the species with the highest potential in view of application purposes. Industrial Crops and Products, 2015, 77, 582-589.	5.2	21
521	Chemical profile and bioactive properties of the essential oil isolated from Ammodaucus leucotrichus fruits growing in Sahara and its evaluation as a cosmeceutical ingredient. Industrial Crops and Products, 2018, 119, 249-254.	5.2	21
522	Antiangiogenic compounds: well-established drugs versus emerging natural molecules. Cancer Letters, 2018, 415, 86-105.	7.2	21

#	Article	IF	CITATIONS
523	Antioxidants and Prooxidants: Effects on Health and Aging. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-2.	4.0	21
524	HPLC-DAD-ESI-MS/MS screening of phytochemical compounds and the bioactive properties of different plant parts of <i>Zizyphus lotus</i> (L.) Desf Food and Function, 2019, 10, 5898-5909.	4.6	21
525	Challenges of traditional herbal teas: plant infusions and their mixtures with bioactive properties. Food and Function, 2019, 10, 5939-5951.	4.6	21
526	Anti-biofilm activity of hydromethanolic plant extracts against Staphylococcus aureus isolates from bovine mastitis. Heliyon, 2019, 5, e01728.	3.2	21
527	Bioactive properties of greenhouseâ€cultivated green beans (Phaseolus vulgaris L.) under biostimulants and waterâ€stress effect. Journal of the Science of Food and Agriculture, 2019, 99, 6049-6059.	3.5	21
528	Nutritional composition and bioactivity of Umbilicus rupestris (Salisb.) Dandy: An underexploited edible wild plant. Food Chemistry, 2019, 295, 341-349.	8.2	21
529	Synthesis, Photochemical and In Vitro Cytotoxic Evaluation of New Iodinated Aminosquaraines as Potential Sensitizers for Photodynamic Therapy. Molecules, 2019, 24, 863.	3.8	21
530	Allergic contact dermatitis: From pathophysiology to development of new preventive strategies. Pharmacological Research, 2020, 162, 105282.	7.1	21
531	The Optimization of Nitrogen Fertilization Regulates Crop Performance and Quality of Processing Tomato (Solanum lycopersicum L. cv. Heinz 3402). Agronomy, 2020, 10, 715.	3.0	21
532	Chemical composition and in vitro biological activities of cardoon (Cynara cardunculus L. var. altilis) Tj ETQq0 0 C	rgBT /Ove	erlock 10 Tf 5
533	The use of gamma radiation for extractability improvement of bioactive compounds in olive oil wastes. Science of the Total Environment, 2020, 727, 138706.	8.0	21
534	Hypericum genus cosmeceutical application – A decade comprehensive review on its multifunctional biological properties. Industrial Crops and Products, 2021, 159, 113053.	5.2	21
535	Chemical characterization of carob seeds (Ceratonia siliqua L.) and use of different extraction techniques to promote its bioactivity. Food Chemistry, 2021, 351, 129263.	8.2	21
536	Bacterial Resistance: Antibiotics of Last Generation used in Clinical Practice and the Arise of Natural Products as New Therapeutic Alternatives. Current Pharmaceutical Design, 2020, 26, 815-837.	1.9	21
537	Phenolics and Antioxidant Activity of Mushroom <i>Leucopaxillus giganteus</i> Mycelium at Different Carbon Sources. Food Science and Technology International, 2008, 14, 47-55.	2.2	20
538	A QCAR model for predicting antioxidant activity of wild mushrooms. SAR and QSAR in Environmental Research, 2009, 20, 579-590.	2.2	20
539	MOLA: a bootable, self-configuring system for virtual screening using AutoDock4/Vina on computer clusters. Journal of Cheminformatics, 2010, 2, 10.	6.1	20
540	Antimicrobial Activity, Growth Inhibition of Human Tumour Cell Lines, and Phytochemical Characterization of the Hydromethanolic Extract Obtained from <i>Sapindus saponaria</i> L. Aerial Parts. BioMed Research International, 2013, 2013, 1-9.	1.9	20

#	Article	IF	CITATIONS
541	Insights on the Formulation of Herbal Beverages with Medicinal Claims According with Their Antioxidant Properties. Molecules, 2013, 18, 2851-2863.	3.8	20
542	Phenolic profile, antibacterial, antimutagenic and antitumour evaluation of Veronica urticifolia Jacq Journal of Functional Foods, 2014, 9, 192-201.	3.4	20
543	Cordyceps militaris (L.) Link Fruiting Body Reduces the Growth of a Non-Small Cell Lung Cancer Cell Line by Increasing Cellular Levels of p53 and p21. Molecules, 2015, 20, 13927-13940.	3.8	20
544	A bioactive formulation based on Fragaria vesca L. vegetative parts: Chemical characterisation and application in κ-carrageenan gelatin. Journal of Functional Foods, 2015, 16, 243-255.	3.4	20
545	Scientific validation of synergistic antioxidant effects in commercialised mixtures of Cymbopogon citratus and Pterospartum tridentatum or Gomphrena globosa for infusions preparation. Food Chemistry, 2015, 185, 16-24.	8.2	20
546	Chestnut and lemon balm based ingredients as natural preserving agents of the nutritional profile in matured "Serra da Estrela―cheese. Food Chemistry, 2016, 204, 185-193.	8.2	20
547	New Insights into the Antiâ€Inflammatory and Antioxidant Properties of Nitrated Phospholipids. Lipids, 2018, 53, 117-131.	1.7	20
548	Apoptosis induction by Pleurotus sajor-caju (Fr.) Singer extracts on colorectal cancer cell lines. Food and Chemical Toxicology, 2018, 112, 383-392.	3.6	20
549	Gomphrena globosa L. as a novel source of food-grade betacyanins: Incorporation in ice-cream and comparison with beet-root extracts and commercial betalains. LWT - Food Science and Technology, 2018, 92, 101-107.	5.2	20
550	Chemical Composition and Plant Growth of Centaurea raphanina subsp. mixta Plants Cultivated under Saline Conditions. Molecules, 2020, 25, 2204.	3.8	20
551	Valorization of Bio-Residues from the Processing of Main Portuguese Fruit Crops: From Discarded Waste to Health Promoting Compounds. Molecules, 2021, 26, 2624.	3.8	20
552	The Compositional Aspects of Edible Flowers as an Emerging Horticultural Product. Molecules, 2021, 26, 6940.	3.8	20
553	Plant volatiles: Using Scented molecules as food additives. Trends in Food Science and Technology, 2022, 122, 97-103.	15.1	20
554	Nutritional and bioactive oils from salmon (Salmo salar) side streams obtained by Soxhlet and optimized microwave-assisted extraction. Food Chemistry, 2022, 386, 132778.	8.2	20
555	Analytical Methods Applied to the Chemical Characterization and Antioxidant Properties of Three Wild Edible Mushroom Species from Northeastern Portugal. Food Analytical Methods, 2014, 7, 645-652.	2.6	19
556	Bioactive Properties of Tabebuia impetiginosa-Based Phytopreparations and Phytoformulations: A Comparison between Extracts and Dietary Supplements. Molecules, 2015, 20, 22863-22871.	3.8	19
557	Bioactive properties and functional constituents of Hypericum androsaemum L.: A focus on the phenolic profile. Food Research International, 2016, 89, 422-431.	6.2	19
558	Leccinum vulpinum Watling induces DNA damage, decreases cell proliferation and induces apoptosis on the human MCF-7 breast cancer cell line. Food and Chemical Toxicology, 2016, 90, 45-54.	3.6	19

#	Article	IF	CITATIONS
559	Wild Roman chamomile extracts and phenolic compounds: enzymatic assays and molecular modelling studies with VECFR-2 tyrosine kinase. Food and Function, 2016, 7, 79-83.	4.6	19
560	Chemical Profiling and Assessment of Antineurodegenerative and Antioxidant Properties of <i>Veronica teucrium</i> L. and <i>Veronica jacquinii </i> <scp>Baumg</scp> Chemistry and Biodiversity, 2017, 14, e1700167.	2.1	19
561	Hovenia dulcis Thunb. pseudofruits as functional foods: Phytochemicals and bioactive properties in different maturity stages. Journal of Functional Foods, 2017, 29, 37-45.	3.4	19
562	Effects of gamma radiation on cork wastewater: Antioxidant activity and toxicity. Chemosphere, 2017, 169, 139-145.	8.2	19
563	Aminosquaraines as potential photodynamic agents: Synthesis and evaluation of in vitro cytotoxicity. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4467-4470.	2.2	19
564	Effects of gamma radiation on the bioactivity of medicinal and aromatic plants: <i>Mentha</i> × <i>piperita</i> L., <i>Thymus vulgaris</i> L. and <i>Aloysia citrodora</i> Paláu as case studies. Food and Function, 2018, 9, 5150-5161.	4.6	19
565	Nutritional quality and staling of wheat bread partially replaced with Peruvian mesquite (Prosopis) Tj ETQq1 1	. 0.784314 rg 6.2	gBT ₁ /Overlock
566	Evaluation of plant extracts as an efficient source of additives for active food packaging. Food Frontiers, 2022, 3, 480-488.	7.4	19
567	Fig "Ficus carica L―and its by-products: A decade evidence of their health-promoting benefits towards the development of novel food formulations. Trends in Food Science and Technology, 2022, 127, 1-13.	15.1	19
568	Modulation of the production of Reactive Oxygen Species (ROS) by cAMP-elevating agents in granulocytes from diabetic patients: an Akt/PKB-dependent phenomenon. Diabetes and Metabolism, 2006, 32, 331-335.	2.9	18
569	Lipophilic and hydrophilic antioxidants, lipid peroxidation inhibition and radical scavenging activity of two Lamiaceae food plants. European Journal of Lipid Science and Technology, 2010, 112, 1115-1121.	1.5	18
570	Coprinopsis atramentaria extract, its organic acids, and synthesized glucuronated and methylated derivatives as antibacterial and antifungal agents. Food and Function, 2014, 5, 2521-2528.	4.6	18
571	Traditional pastry with chestnut flowers as natural ingredients: An approach of the effects on nutritional value and chemical composition. Journal of Food Composition and Analysis, 2015, 44, 93-101.	3.9	18
572	Phytopharmacologic preparations as predictors of plant bioactivity: A particular approach to Echinacea purpurea (L.) Moench antioxidant properties. Nutrition, 2016, 32, 834-839.	2.4	18
573	Infusions of gamma irradiated Aloysia citrodora L. and Mentha x piperita L.: Effects on phenolic composition, cytotoxicity, antibacterial and virucidal activities. Industrial Crops and Products, 2017, 97, 582-590.	5.2	18
574	Mushroom-based cosmeceutical ingredients: Microencapsulation and in vitro release profile. Industrial Crops and Products, 2018, 124, 44-52.	5.2	18
575	Cotton and cardoon byproducts as potential growing media components for Cichorium spinosum L. commercial cultivation. Journal of Cleaner Production, 2019, 240, 118254.	9.3	18
576	<i>Eucalyptus globulus</i> Labill. decoction extract inhibits the growth of NCI-H460 cells by increasing the p53 levels and altering the cell cycle profile. Food and Function, 2019, 10, 3188-3197.	4.6	18

#	Article	IF	CITATIONS
577	Phenolic Profile and Bioactive Properties of Carissa macrocarpa (Eckl.) A.DC.: An In Vitro Comparative Study between Leaves, Stems, and Flowers. Molecules, 2019, 24, 1696.	3.8	18
578	Heat and pH stable curcumin-based hydrophilic colorants obtained by the solid dispersion technology assisted by spray-drying. Chemical Engineering Science, 2019, 205, 248-258.	3.8	18
579	Editorial: Rediscovering Local Landraces: Shaping Horticulture for the Future. Frontiers in Plant Science, 2019, 10, 126.	3.6	18
580	Ionizing Radiation Technologies to Increase the Extraction of Bioactive Compounds from Agro-Industrial Residues: A Review. Journal of Agricultural and Food Chemistry, 2020, 68, 11054-11067.	5.2	18
581	Betacyanins from Gomphrena globosa L. flowers: Incorporation in cookies as natural colouring agents. Food Chemistry, 2020, 329, 127178.	8.2	18
582	Seasonal variation of bioactive properties and phenolic composition of Cynara cardunculus var. altilis. Food Research International, 2020, 134, 109281.	6.2	18
583	Chemical and Bioactive Features of Amaranthus caudatus L. Flowers and Optimized Ultrasound-Assisted Extraction of Betalains. Foods, 2021, 10, 779.	4.3	18
584	Antimicrobial Properties, Cytotoxic Effects, and Fatty Acids Composition of Vegetable Oils from Purslane, Linseed, Luffa, and Pumpkin Seeds. Applied Sciences (Switzerland), 2021, 11, 5738.	2.5	18
585	Anthocyanins from Rubus fruticosus L. and Morus nigra L. Applied as Food Colorants: A Natural Alternative. Plants, 2021, 10, 1181.	3.5	18
586	Red pitaya (Hylocereus costaricensis) peel as a source of valuable molecules: Extraction optimization to recover natural colouring agents. Food Chemistry, 2022, 372, 131344.	8.2	18
587	Food Additives from Fruit and Vegetable By-Products and Bio-Residues: A Comprehensive Review Focused on Sustainability. Sustainability, 2022, 14, 5212.	3.2	18
588	EFFECTS OF DIFFERENT PHENOLS EXTRACTION CONDITIONS ON ANTIOXIDANT ACTIVITY OF ALMOND (PRUNUS DULCIS) FRUITS. Journal of Food Biochemistry, 2009, 33, 763-776.	2.9	17
589	Can Suillus granulatus (L.) Roussel be classified as a functional food?. Food and Function, 2014, 5, 2861-2869.	4.6	17
590	Flower extracts of Filipendula ulmaria (L.) Maxim inhibit the proliferation of the NCI-H460 tumour cell line. Industrial Crops and Products, 2014, 59, 149-153.	5.2	17
591	<i>In Vivo</i> Anti- <i>Candida</i> Activity of Phenolic Extracts and Compounds: Future Perspectives Focusing on Effective Clinical Interventions. BioMed Research International, 2015, 2015, 1-14.	1.9	17
592	The antifungal activity of extracts of <i>Osmundea pinnatifida</i> , an edible seaweed, indicates its usage as a safe environmental fungicide or as a food additive preventing post-harvest fungal food contamination. Food and Function, 2018, 9, 6187-6195.	4.6	17
593	The Health-Benefits and Phytochemical Profile of Salvia apiana and Salvia farinacea var. Victoria Blue Decoctions. Antioxidants, 2019, 8, 241.	5.1	17
594	In Vitro Interactions of Moroccan Propolis Phytochemical's on Human Tumor Cell Lines and Anti-Inflammatory Properties. Biomolecules, 2019, 9, 315.	4.0	17

#	Article	IF	CITATIONS
595	Cottonâ€hydrogel composite for improved wound healing: Antimicrobial activity and antiâ€inflammatory evaluation—Part 2. Polymers for Advanced Technologies, 2019, 30, 863-871.	3.2	17
596	Exploring the phytochemical profile of Cytinus hypocistis (L.) L. as a source of health-promoting biomolecules behind its in vitro bioactive and enzyme inhibitory properties. Food and Chemical Toxicology, 2020, 136, 111071.	3.6	17
597	Lovage (Levisticum officinale W.D.J. Koch) Roots: A Source of Bioactive Compounds towards a Circular Economy. Resources, 2020, 9, 81.	3.5	17
598	Compositional Features of the "Kweli―Red Raspberry and Its Antioxidant and Antimicrobial Activities. Foods, 2020, 9, 1522.	4.3	17
599	The Impact of Fertilization Regime on the Crop Performance and Chemical Composition of Potato (Solanum tuberosum L.) Cultivated in Central Greece. Agronomy, 2020, 10, 474.	3.0	17
600	Phenolic profiling, biological activities and in silico studies of Acacia tortilis (Forssk.) Hayne ssp. raddiana extracts. Food Bioscience, 2020, 36, 100616.	4.4	17
601	Chemical Profile and Bioactivities of Extracts from Edible Plants Readily Available in Portugal. Foods, 2021, 10, 673.	4.3	17
602	Antibiofilm Potential of Medicinal Plants against Candida spp. Oral Biofilms: A Review. Antibiotics, 2021, 10, 1142.	3.7	17
603	Applications of bioactive compounds extracted from olive industry wastes: A review. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 453-476.	11.7	17
604	Obtaining Aromatic Extracts from Portuguese Thymus mastichina L. by Hydrodistillation and Supercritical Fluid Extraction with CO2 as Potential Flavouring Additives for Food Applications. Molecules, 2022, 27, 694.	3.8	17
605	Photochemistry and Photophysics of Thienocarbazoles¶. Photochemistry and Photobiology, 2003, 77, 121-128.	2.5	16
606	Aminodi(hetero)arylamines in the Thieno[3,2-b]pyridine Series: Synthesis, Effects in Human Tumor Cells Growth, Cell Cycle Analysis, Apoptosis and Evaluation of Toxicity Using Non-Tumor Cells. Molecules, 2012, 17, 3834-3843.	3.8	16
607	Bioactivity and phytochemical characterization of Arenaria montana L Food and Function, 2014, 5, 1848-1855.	4.6	16
608	Phenolic profile and <i>in vitro</i> bioactive potential of Saharan <i>Juniperus phoenicea</i> L. and <i>Cotula cinerea</i> (Del) growing in Algeria. Food and Function, 2018, 9, 4664-4672.	4.6	16
609	Revalorization of Tunisian wild Amaranthaceae halophytes: Nutritional composition variation at two different phenotypes stages. Journal of Food Composition and Analysis, 2020, 89, 103463.	3.9	16
610	Seed oil and seed oil byproducts of common purslane (Portulaca oleracea L.): A new insight to plant-based sources rich in omega-3 fatty acids. LWT - Food Science and Technology, 2020, 123, 109099.	5.2	16
611	Chemical Composition, Diuretic, and Antityrosinase Activity of Traditionally Used Romanian Cerasorum stipites. Frontiers in Pharmacology, 2021, 12, 647947.	3.5	16
612	Ultrasound-Assisted Extraction of Flavonoids from Kiwi Peel: Process Optimization and Bioactivity Assessment. Applied Sciences (Switzerland), 2021, 11, 6416.	2.5	16

#	Article	IF	CITATIONS
613	Eggplant Fruit (Solanum melongena L.) and Bio-Residues as a Source of Nutrients, Bioactive Compounds, and Food Colorants, Using Innovative Food Technologies. Applied Sciences (Switzerland), 2021, 11, 151.	2.5	16
614	Bioactive profile of edible nasturtium and rose flowers during simulated gastrointestinal digestion. Food Chemistry, 2022, 381, 132267.	8.2	16
615	Chemical and Bioactive Characterization of the Essential Oils Obtained from Three Mediterranean Plants. Molecules, 2021, 26, 7472.	3.8	16
616	Topical anti-inflammatory plant species: Bioactivity of Bryonia dioica, Tamus communis and Lonicera periclymenum fruits. Industrial Crops and Products, 2011, 34, 1447-1454.	5.2	15
617	Bryonia dioica, Tamus communis and Lonicera periclymenum fruits: Characterization in phenolic compounds and incorporation of their extracts in hydrogel formulations for topical application. Industrial Crops and Products, 2013, 49, 169-176.	5.2	15
618	Chemical characterization and antioxidant properties of Lepista nuda fruiting bodies and mycelia obtained by in vitro culture: Effects of collection habitat and culture media. Food Research International, 2013, 51, 496-502.	6.2	15
619	New Cerebroside and Nucleoside Derivatives from a Red Sea Strain of the Marine Cyanobacterium Moorea producens. Molecules, 2016, 21, 324.	3.8	15
620	Chemical characterization and bioactive properties of aqueous and organic extracts of Geranium robertianum L Food and Function, 2016, 7, 3807-3814.	4.6	15
621	A comparison of the bioactivity and phytochemical profile of three different cultivars of globe amaranth: red, white, and pink. Food and Function, 2016, 7, 679-688.	4.6	15
622	Postharvest changes in the phenolic profile of watercress induced by post-packaging irradiation and modified atmosphere packaging. Food Chemistry, 2018, 254, 70-77.	8.2	15
623	<i>Laurus nobilis</i> (laurel) aqueous leaf extract's toxicological and anti-tumor activities in HPV16-transgenic mice. Food and Function, 2018, 9, 4419-4428.	4.6	15
624	Comparative investigation on edible mushroomsMacrolepiota mastoidea,M. rhacodesandM. procera: functional foods with diverse biological activities. Food and Function, 2019, 10, 7678-7686.	4.6	15
625	Antioxidant Extracts of Three Russula Genus Species Express Diverse Biological Activity. Molecules, 2020, 25, 4336.	3.8	15
626	The Effect of Nitrogen Input on Chemical Profile and Bioactive Properties of Green- and Red-Colored Basil Cultivars. Antioxidants, 2020, 9, 1036.	5.1	15
627	Dietary Supplementation with Chestnut (Castanea sativa) Reduces Abdominal Adiposity in FVB/n Mice: A Preliminary Study. Biomedicines, 2020, 8, 75.	3.2	15
628	Chemical composition and evaluation of antioxidant, antimicrobial and antiproliferative activities of Tuber and Terfezia truffles. Food Research International, 2021, 140, 110071.	6.2	15
629	Phenolic profiling and in vitro bioactivities of three medicinal Bryophyllum plants. Industrial Crops and Products, 2021, 162, 113241.	5.2	15
630	Chestnut flowers as functionalizing agents to enhance the antioxidant properties of highly appreciated traditional pastry. Food and Function, 2014, 5, 2989-2995.	4.6	14

#	Article	IF	CITATIONS
631	Validation of Gamma and Electron Beam Irradiation as Alternative Conservation Technology for European Chestnuts. Food and Bioprocess Technology, 2014, 7, 1917-1927.	4.7	14
632	Effects of gamma radiation on chemical and antioxidant properties, anti-hepatocellular carcinoma activity and hepatotoxicity of borututu. Innovative Food Science and Emerging Technologies, 2014, 26, 271-277.	5.6	14
633	Non-edible parts of Solanum stramoniifolium Jacq. – a new potent source of bioactive extracts rich in phenolic compounds for functional foods. Food and Function, 2017, 8, 2013-2021.	4.6	14
634	Electron-beam irradiation as an alternative to preserve nutritional, chemical and antioxidant properties of dried plants during extended storage periods. LWT - Food Science and Technology, 2017, 82, 386-395.	5.2	14
635	Bioactivity and chemical characterization of Opuntia macrorhiza Engelm. seed oil: potential food and pharmaceutical applications. Food and Function, 2017, 8, 2739-2747.	4.6	14
636	Nitrate Esters of Heteroaromatic Compounds as <i>Candida albicans</i> CYP51 Enzyme Inhibitors. ChemMedChem, 2018, 13, 251-258.	3.2	14
637	Incorporation of tocopherol-rich extracts from mushroom mycelia into yogurt. Food and Function, 2018, 9, 3166-3172.	4.6	14
638	Yerba mate aqueous extract improves the oxidative and inflammatory states of rats with adjuvant-induced arthritis. Food and Function, 2019, 10, 5682-5696.	4.6	14
639	Nutritive and Bioactive Properties of Mesquite (Prosopis pallida) Flour and Its Technological Performance in Breadmaking. Foods, 2020, 9, 597.	4.3	14
640	Biotransformation of rice and sunflower side-streams by dikaryotic and monokaryotic strains of Pleurotus sapidus: Impact on phenolic profiles and bioactive properties. Food Research International, 2020, 132, 109094.	6.2	14
641	Low-cost and high-performance 3D printed YBCO superconductors. Ceramics International, 2021, 47, 381-387.	4.8	14
642	Potato biodiversity: A linear discriminant analysis on the nutritional and physicochemical composition of fifty genotypes. Food Chemistry, 2021, 345, 128853.	8.2	14
643	Valorization of Lignin Side-Streams into Polyols and Rigid Polyurethane Foams—A Contribution to the Pulp and Paper Industry Biorefinery. Energies, 2021, 14, 3825.	3.1	14
644	Chemical and Bioactive Characterization of Spanish and Belgian Apple Pomace for Its Potential Use as a Novel Dermocosmetic Formulation. Foods, 2021, 10, 1949.	4.3	14
645	Dietary Supplements: Foods, Medicines, or Both? A Controversial Designation with Unspecific Legislation. Current Pharmaceutical Design, 2017, 23, 2722-2730.	1.9	14
646	Chemometric approaches to evaluate the substitution of synthetic food dyes by natural compounds: The case of nanoencapsulated curcumin, spirulina, and hibiscus extracts. LWT - Food Science and Technology, 2022, 154, 112786.	5.2	14
647	Suillus luteus methanolic extract inhibits cell growth and proliferation of a colon cancer cell line. Food Research International, 2013, 53, 476-481.	6.2	13
648	HPLC-Profiles of Tocopherols, Sugars, and Organic Acids in Three Medicinal Plants Consumed as Infusions. International Journal of Food Science, 2014, 2014, 1-5.	2.0	13

#	Article	IF	CITATIONS
649	Using Gamma Irradiation to Attenuate the Effects Caused by Drying or Freezing in Macrolepiota procera Organic Acids and Phenolic Compounds. Food and Bioprocess Technology, 2014, 7, 3012-3021.	4.7	13
650	Is honey able to potentiate the antioxidant and cytotoxic properties of medicinal plants consumed as infusions for hepatoprotective effects?. Food and Function, 2015, 6, 1435-1442.	4.6	13
651	An environmental management industrial solution for the treatment and reuse of mussel wastewaters. Science of the Total Environment, 2015, 538, 117-128.	8.0	13
652	Ethnopharmacological uses of Sempervivum tectorum L. in southern Serbia: Scientific confirmation for the use against otitis linked bacteria. Journal of Ethnopharmacology, 2015, 176, 297-304.	4.1	13
653	Antimicrobial/Antibiofilm Activity and Cytotoxic Studies of βâ€Thujaplicin Derivatives. Archiv Der Pharmazie, 2016, 349, 698-709.	4.1	13
654	Electron beam and gamma irradiation as feasible conservation technologies for wild Arenaria montana L.: Effects on chemical and antioxidant parameters. Innovative Food Science and Emerging Technologies, 2016, 36, 269-276.	5.6	13
655	Antiproliferative Activity of Neem Leaf Extracts Obtained by a Sequential Pressurized Liquid Extraction. Pharmaceuticals, 2018, 11, 76.	3.8	13
656	Phenolic Compounds and Bioactivity of Cytisus villosus Pourr Molecules, 2018, 23, 1994.	3.8	13
657	A novel natural coating for food preservation: Effectiveness on microbial growth and physicochemical parameters. LWT - Food Science and Technology, 2019, 104, 76-83.	5.2	13
658	Synthesis, photochemical and in vitro cytotoxic evaluation of benzoselenazole-based aminosquaraines. Photochemical and Photobiological Sciences, 2019, 18, 336-342.	2.9	13
659	Chemical Composition of Cynara Cardunculus L. var. altilis Heads: The Impact of Harvesting Time. Agronomy, 2020, 10, 1088.	3.0	13
660	Insights on the Extraction Performance of Alkanediols and Glycerol: Using Juglans regia L. Leaves as a Source of Bioactive Compounds. Molecules, 2020, 25, 2497.	3.8	13
661	Antimicrobials from Medicinal Plants: An Emergent Strategy to Control Oral Biofilms. Applied Sciences (Switzerland), 2021, 11, 4020.	2.5	13
662	Lipid composition optimization in spray congealing technique and testing with curcumin-loaded microparticles. Advanced Powder Technology, 2021, 32, 1710-1722.	4.1	13
663	Microgreens: from trendy vegetables to functional food and potential nutrition security resource. Acta Horticulturae, 2021, , 235-242.	0.2	13
664	Cytinus hypocistis (L.) L: Optimised heat/ultrasound-assisted extraction of tannins by response surface methodology. Separation and Purification Technology, 2021, 276, 119358.	7.9	13
665	How gamma and electron-beam irradiations modulate phenolic profile expression in Melissa officinalis L. and Melittis melissophyllum L Food Chemistry, 2018, 240, 253-258.	8.2	13
666	ChemT, an open-source software for building template-based chemical libraries. SAR and QSAR in Environmental Research, 2011, 22, 603-610.	2.2	12

#	Article	IF	CITATIONS
667	Relevance of the Mention of Antioxidant Properties in Yogurt Labels: In Vitro Evaluation and Chromatographic Analysis. Antioxidants, 2013, 2, 62-76.	5.1	12
668	Aggressive angiomyxoma of the vagina: a case report. Revista Brasileira De Ginecologia E Obstetricia, 2013, 35, 575-582.	0.8	12
669	Analytical Methods Applied to Assess the Effects of Gamma Irradiation on Color, Chemical Composition and Antioxidant Activity of Ginkgo biloba L. Food Analytical Methods, 2015, 8, 154-163.	2.6	12
670	Development of nutraceutical formulations based on the mycelium of Pleurotus ostreatus and Agaricus bisporus. Food and Function, 2017, 8, 2155-2164.	4.6	12
671	Inflammasome in Dendritic Cells Immunobiology: Implications to Diseases and Therapeutic Strategies. Current Drug Targets, 2017, 18, 1003-1018.	2.1	12
672	Nature and kinetics of redox imbalance triggered by respiratory and skin chemical sensitizers on the human monocytic cell line THP-1. Redox Biology, 2018, 16, 75-86.	9.0	12
673	Optimization of the Extraction Process to Obtain a Colorant Ingredient from Leaves of Ocimum basilicum var. purpurascens. Molecules, 2019, 24, 686.	3.8	12
674	The Effect of Nitrogen Fertigation and Harvesting Time on Plant Growth and Chemical Composition of Centaurea raphanina subsp. mixta (DC.) Runemark. Molecules, 2020, 25, 3175.	3.8	12
675	Assessment of the In Vivo Antioxidant Activity of an Anthocyanin-Rich Bilberry Extract Using the Caenorhabditis elegans Model. Antioxidants, 2020, 9, 509.	5.1	12
676	Development of new bilberry (Vaccinium myrtillus L.) based snacks: Nutritional, chemical and bioactive features. Food Chemistry, 2021, 334, 127511.	8.2	12
677	Current status of genus Impatiens: Bioactive compounds and natural pigments with health benefits. Trends in Food Science and Technology, 2021, 117, 106-124.	15.1	12
678	Chickpea and Chestnut Flours as Non-Gluten Alternatives in Cookies. Foods, 2021, 10, 911.	4.3	12
679	Phenolic Compounds from Irradiated Olive Wastes: Optimization of the Heat-Assisted Extraction Using Response Surface Methodology. Chemosensors, 2021, 9, 231.	3.6	12
680	Optimization of the drying process of autumn fruits rich in antioxidants: a study focusing on rosehip (<i>Rosa canina</i> L.) and sea buckthorn (<i>Elaeagnus rhamnoides</i> (L.) A. Nelson) and their bioactive properties. Food and Function, 2021, 12, 3939-3953.	4.6	12
681	Comparative evaluation of physicochemical profile and bioactive properties of red edible seaweed Chondrus crispus subjected to different drying methods. Food Chemistry, 2022, 383, 132450.	8.2	12
682	Triacylglycerol Profile as a Chemical Fingerprint of Mushroom Species: Evaluation by Principal Component and Linear Discriminant Analyses. Journal of Agricultural and Food Chemistry, 2012, 60, 10592-10599.	5.2	11
683	Virtual screening of low molecular weight mushrooms compounds as potential Mdm2 inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2013, 28, 569-575.	5.2	11
684	Comparative evaluation of antimutagenic and antimitotic effects of <i>Morchella esculenta</i> extracts and protocatechuic acid. Frontiers in Life Science: Frontiers of Interdisciplinary Research in the Life Sciences, 2013, 7, 218-223.	1.1	11

#	Article	IF	CITATIONS
685	Chemical characterization and bioactive properties of Geranium molle L.: from the plant to the most active extract and its phytochemicals. Food and Function, 2016, 7, 2204-2212.	4.6	11
686	Tarragon phenolic extract as a functional ingredient for pizza dough: Comparative performance with ascorbic acid (E300). Journal of Functional Foods, 2016, 26, 268-278.	3.4	11
687	Artichoke and milk thistle pills and syrups as sources of phenolic compounds with antimicrobial activity. Food and Function, 2016, 7, 3083-3090.	4.6	11
688	Bioactivity, proximate, mineral and volatile profiles along the flowering stages of Opuntia microdasys (Lehm.): defining potential applications. Food and Function, 2016, 7, 1458-1467.	4.6	11
689	Enhancement of nutritional and bioactive compounds by in vitro culture of wild Fragaria vesca L. vegetative parts. Food Chemistry, 2017, 235, 212-219.	8.2	11
690	In vitro antioxidant activity, α-glucosidase inhibitory potential and in vivo protective effect of Asparagus stipularis Forssk aqueous extract against high-fructose diet-induced metabolic syndrome in rats. Journal of Functional Foods, 2018, 47, 521-530.	3.4	11
691	<i>Agaricus blazei</i> Murrill from Brazil: an ingredient for nutraceutical and cosmeceutical applications. Food and Function, 2019, 10, 565-572.	4.6	11
692	Bioactivity, hydrophilic, lipophilic and volatile compounds in pulps and skins of Opuntia macrorhiza and Opuntia microdasys fruits. LWT - Food Science and Technology, 2019, 105, 57-65.	5.2	11
693	Development of a natural preservative obtained from male chestnut flowers: optimization of a heat-assisted extraction technique. Food and Function, 2019, 10, 1352-1363.	4.6	11
694	Effect of phosphorus application rate on Mentha spicata L. grown in deep flow technique (DFT). Food Chemistry, 2019, 276, 84-92.	8.2	11
695	Seaweed Essential Oils as a New Source of Bioactive Compounds for Cyanobacteria Growth Control: Innovative Ecological Biocontrol Approach. Toxins, 2020, 12, 527.	3.4	11
696	Infusions of Herbal Blends as Promising Sources of Phenolic Compounds and Bioactive Properties. Molecules, 2020, 25, 2151.	3.8	11
697	Characterization and Application of Pomegranate Epicarp Extracts as Functional Ingredients in a Typical Brazilian Pastry Product. Molecules, 2020, 25, 1481.	3.8	11
698	Effects of a <i>Myrciaria jaboticaba</i> peel extract on starch and triglyceride absorption and the role of cyanidin-3- <i>O</i> -glucoside. Food and Function, 2021, 12, 2644-2659.	4.6	11
699	Antimicrobial activity, chemical composition and cytotoxicity of <i>Lentinus crinitus</i> basidiocarp. Food and Function, 2021, 12, 6780-6792.	4.6	11
700	Valorization of Sicanaodorifera (Vell.) Naudin Epicarp as a Source of Bioactive Compounds: Chemical Characterization and Evaluation of Its Bioactive Properties. Foods, 2021, 10, 700.	4.3	11
701	Extraction of Aloesin from Aloe vera Rind Using Alternative Green Solvents: Process Optimization and Biological Activity Assessment. Biology, 2021, 10, 951.	2.8	11
702	Synthesis of the first thieno-δ-carboline. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 181, 290-296.	3.9	10

#	Article	IF	CITATIONS
703	Potentiating effects of honey on antioxidant properties of lemon-flavoured black tea. International Journal of Food Sciences and Nutrition, 2013, 64, 230-234.	2.8	10
704	Phenolic profile and antimicrobial activity of different dietary supplements based on Cochlospermum angolensis Welw Industrial Crops and Products, 2015, 74, 412-416.	5.2	10
705	Boletus aereus growing wild in Serbia: chemical profile, in vitro biological activities, inactivation and growth control of food-poisoning bacteria in meat. Journal of Food Science and Technology, 2015, 52, 7385-7392.	2.8	10
706	Modified atmosphere packaging and post-packaging irradiation of Rumex induratus leaves: a comparative study of postharvest quality changes. Journal of Food Science and Technology, 2016, 53, 2943-2956.	2.8	10
707	Effect of therapy-related acute myeloid leukemia on the outcome of patients with acute myeloid leukemia. Oncology Letters, 2016, 12, 262-268.	1.8	10
708	Assessment of the stability of catechin-enriched extracts obtained from Arbutus unedo L. fruits: Kinetic mathematical modeling of pH and temperature properties on powder and solution systems. Industrial Crops and Products, 2017, 99, 150-162.	5.2	10
709	Exploring reserve lots of Cymbopogon citratus , Aloysia citrodora and Thymus × citriodorus as improved sources of phenolic compounds. Food Chemistry, 2018, 257, 83-89.	8.2	10
710	Revalorization of wild <i>Asparagus stipularis</i> Forssk. as a traditional vegetable with nutritional and functional properties. Food and Function, 2018, 9, 1578-1586.	4.6	10
711	Amantagula Fruit (Carissa macrocarpa (Eckl.) A.DC.): Nutritional and Phytochemical Characterization. Plant Foods for Human Nutrition, 2019, 74, 76-82.	3.2	10
712	Optimization of ergosterol extraction from Pleurotus mushrooms using response surface methodology. Food and Function, 2020, 11, 5887-5897.	4.6	10
713	Promising Preserving Agents from Sage and Basil: A Case Study with Yogurts. Foods, 2021, 10, 676.	4.3	10
714	The inhibitory action of purple tea on in vivo starch digestion compared to other Camellia sinensis teas. Food Research International, 2021, 150, 110781.	6.2	10
715	Development of an Optimized Drying Process for the Recovery of Bioactive Compounds from the Autumn Fruits of Berberis vulgaris L. and Crataegus monogyna Jacq Antioxidants, 2021, 10, 1579.	5.1	10
716	Phenolic Composition and Biological Properties of Cynara cardunculus L. var. altilis Petioles: Influence of the Maturity Stage. Antioxidants, 2021, 10, 1907.	5.1	10
717	A magnetization and neutron powder diffraction study of compounds (R = Y, Dy, Ho, Er). Journal of Physics Condensed Matter, 1998, 10, 4101-4112.	1.8	9
718	Insights in the antioxidant activity of diarylamines from the 2,3-dimethylbenzo[b]thiophene through the redox profile. Journal of Electroanalytical Chemistry, 2009, 628, 43-47.	3.8	9
719	QCAR models to predict wild mushrooms radical scavenging activity, reducing power and lipid peroxidation inhibition. Chemometrics and Intelligent Laboratory Systems, 2011, 109, 192-196.	3.5	9
720	Effects of gamma and electron beam irradiations on the triacylglycerol profile of fresh and stored Castanea sativa Miller samples. Postharvest Biology and Technology, 2013, 81, 1-6.	6.0	9

#	Article	lF	CITATIONS
721	Expanding Current Knowledge on the Chemical Composition and Antioxidant Activity of the Genus Lactarius. Molecules, 2014, 19, 20650-20663.	3.8	9
722	An Aqueous Extract of Tuberaria lignosa Inhibits Cell Growth, Alters the Cell Cycle Profile, and Induces Apoptosis of NCI-H460 Tumor Cells. Molecules, 2016, 21, 595.	3.8	9
723	Phytochemical characterization and bioactive properties of Osyris quadripartita Salzm. ex Decne. leaves from Algeria. RSC Advances, 2016, 6, 72768-72776.	3.6	9
724	Bio-guided fractionation of extracts of Geranium robertianum L.: Relationship between phenolic profile and biological activity. Industrial Crops and Products, 2017, 108, 543-552.	5.2	9
725	Fractionation of the more active extracts of <i>Geranium molle</i> L.: a relationship between their phenolic profile and biological activity. Food and Function, 2018, 9, 2032-2042.	4.6	9
726	Antimicrobial and cytotoxic activities of short carbon chain unsaturated sucrose esters. Medicinal Chemistry Research, 2018, 27, 980-988.	2.4	9
727	Enhancing the antimicrobial and antifungal activities of a coloring extract agent rich in betacyanins obtained from <i>Gomphrena globosa</i> L. flowers. Food and Function, 2018, 9, 6205-6217.	4.6	9
728	Bioactive properties and phytochemical assessment of Bacupari-anão (Garcinia brasiliensis Mart.) leaves native to Rondônia, Brazil. Food and Function, 2018, 9, 5621-5628.	4.6	9
729	Dehydration process influences the phenolic profile, antioxidant and antimicrobial properties of Galium aparine L Industrial Crops and Products, 2018, 120, 97-103.	5.2	9
730	Carbon-Based Magnetic Nanocarrier for Controlled Drug Release: A Green Synthesis Approach. Journal of Carbon Research, 2019, 5, 1.	2.7	9
731	Phytochemical Composition and Nutritional Value of Pot-Grown Turnip-Rooted and Plain and Curly-Leafed Parsley Cultivars. Agronomy, 2020, 10, 1416.	3.0	9
732	Chemical Composition and Bioactive Characterisation of Impatiens walleriana. Molecules, 2021, 26, 1347.	3.8	9
733	Lentinus crinitus basidiocarp stipe and pileus: chemical composition, cytotoxicity and antioxidant activity. European Food Research and Technology, 2021, 247, 1355-1366.	3.3	9
734	Nutrient composition of Algerian strawberry-tree fruits (Arbutus unedo L.). Fruits, 2018, 73, 283-297.	0.4	9
735	Energy-saving wastewater treatment systems: formulation of cost functions. Water Science and Technology, 2007, 56, 85-92.	2.5	8
736	Two-Dimensional PCA Highlights the Differentiated Antitumor and Antimicrobial Activity of Methanolic and Aqueous Extracts of <i>Laurus nobilis</i> L. from Different Origins. BioMed Research International, 2014, 2014, 1-10.	1.9	8
737	Triacylglycerols profiling as a chemical tool to identify mushrooms submitted to gamma or electron beam irradiation. Food Chemistry, 2014, 159, 399-406.	8.2	8
738	Combined effects of gamma-irradiation and preparation method on antioxidant activity and phenolic composition of Tuberaria lignosa. RSC Advances, 2015, 5, 14756-14767.	3.6	8

#	Article	IF	CITATIONS
739	Extending the use of irradiation to preserve chemical and bioactive properties of medicinal and aromatic plants: A case study with four species submitted to electron beam. Industrial Crops and Products, 2015, 77, 972-982.	5.2	8
740	Phospholipidomic Profile Variation on THPâ€1 Cells Exposed to Skin or Respiratory Sensitizers and Respiratory Irritant. Journal of Cellular Physiology, 2016, 231, 2639-2651.	4.1	8
741	Nutritional properties, identification of phenolic compounds, and enzyme inhibitory activities of Feijoa sellowiana leaves. Journal of Food Biochemistry, 2019, 43, e13012.	2.9	8
742	Cytinus hypocistis (L.) L. subsp. macranthus Wettst.: Nutritional Characterization. Molecules, 2019, 24, 1111.	3.8	8
743	Stability of total folates/vitamin B9 in irradiated watercress and buckler sorrel during refrigerated storage. Food Chemistry, 2019, 274, 686-690.	8.2	8
744	Rosemary Flowers as Edible Plant Foods: Phenolic Composition and Antioxidant Properties in Caenorhabditis elegans. Antioxidants, 2020, 9, 811.	5.1	8
745	Chemical Composition of Cynara cardunculus L. var. altilis Bracts Cultivated in Central Greece: The Impact of Harvesting Time. Agronomy, 2020, 10, 1976.	3.0	8
746	Characterization of Extra Early Spanish Clementine Varieties (Citrus clementina Hort ex Tan) as a Relevant Source of Bioactive Compounds with Antioxidant Activity. Foods, 2020, 9, 642.	4.3	8
747	Extracts from <i>Vaccinium myrtillus</i> L. fruits as a source of natural colorants: chemical characterization and incorporation in yogurts. Food and Function, 2020, 11, 3227-3234.	4.6	8
748	Phenolic composition and biological activities of the in vitro cultured endangered Eryngium viviparum J. Gay. Industrial Crops and Products, 2020, 148, 112325.	5.2	8
749	Phytochemical and Antioxidant Profile of Pardina Lentil Cultivars from Different Regions of Spain. Foods, 2021, 10, 1629.	4.3	8
750	Effect of Plant Biostimulants on Nutritional and Chemical Profiles of Almond and Hazelnut. Applied Sciences (Switzerland), 2021, 11, 7778.	2.5	8
751	Food Metabolites as Tools for Authentication, Processing, and Nutritive Value Assessment. Foods, 2021, 10, 2213.	4.3	8
752	Exploring the antioxidant, anti-inflammatory and antiallergic potential of Brazilian propolis in monocytes. Phytomedicine Plus, 2022, 2, 100231.	2.0	8
753	The powerful Solanaceae: Food and nutraceutical applications in a sustainable world. Advances in Food and Nutrition Research, 2022, , 131-172.	3.0	8
754	Extraction of chlorophylls from Daucus carota L. and Solanum lycopersicum var. cerasiforme crop by-products. , 2022, 1, 100048.		8
755	Recovery of Citric Acid from Citrus Peels: Ultrasound-Assisted Extraction Optimized by Response Surface Methodology. Chemosensors, 2022, 10, 257.	3.6	8
756	Mycorrhizal induction of phenolic compounds and antioxidant properties of fungi and seedlings during the early steps of symbiosis. Chemoecology, 2011, 21, 151-159.	1.1	7

#	Article	IF	CITATIONS
757	Effect of the mycorrhizal symbiosis time in the antioxidant activity of fungi and Pinus pinaster roots, stems and leaves. Industrial Crops and Products, 2012, 35, 211-216.	5.2	7
758	Quality Control of Gamma Irradiated Dwarf Mallow (Malva neglecta Wallr.) Based on Color, Organic Acids, Total Phenolics and Antioxidant Parameters. Molecules, 2016, 21, 467.	3.8	7
759	Synthesis and cytotoxic evaluation of new terpenylpurines. RSC Advances, 2016, 6, 105412-105420.	3.6	7
760	Improving bioactive compounds extractability of Amorphophallus paeoniifolius (Dennst.) Nicolson. Industrial Crops and Products, 2016, 79, 180-187.	5.2	7
761	Gamma and electron-beam irradiation as viable technologies for wild mushrooms conservation: effects on macro- and micro-elements. European Food Research and Technology, 2016, 242, 1169-1175.	3.3	7
762	Phenolic Plant Extracts Versus Penicillin G: In Vitro Susceptibility of Staphylococcus aureus Isolated from Bovine Mastitis. Pharmaceuticals, 2019, 12, 128.	3.8	7
763	Antioxidants and Prooxidants: Effects on Health and Aging 2018. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-2.	4.0	7
764	Effect of Saline Conditions on Chemical Profile and the Bioactive Properties of Three Red-Colored Basil Cultivars. Agronomy, 2020, 10, 1824.	3.0	7
765	Influence of Calcium Silicate on the Chemical Properties of Pleurotus ostreatus var. florida (Jacq.) P. Kumm. Journal of Fungi (Basel, Switzerland), 2020, 6, 299.	3.5	7
766	Analysis of the oxypropylation process of a lignocellulosic material, almond shell, using the response surface methodology (RSM). Industrial Crops and Products, 2020, 153, 112542.	5.2	7
767	Phenolic Compounds and Bioactive Properties of Ruscus aculeatus L. (Asparagaceae): The Pharmacological Potential of an Underexploited Subshrub. Molecules, 2021, 26, 1882.	3.8	7
768	Combined effects of irradiation and storage time on the nutritional and chemical parameters of dried <i>Agaricus bisporus</i> Portobello mushroom flour. Journal of Food Science, 2021, 86, 2276-2287.	3.1	7
769	Study on the Potential Application of Impatiens balsamina L. Flowers Extract as a Natural Colouring Ingredient in a Pastry Product. International Journal of Environmental Research and Public Health, 2021, 18, 9062.	2.6	7
770	Influence of strains and environmental cultivation conditions on the bioconversion of ergosterol and vitamin <scp>D₂</scp> in the sun mushroom. Journal of the Science of Food and Agriculture, 2022, 102, 1699-1706.	3.5	7
771	The Role of Bioactive Compounds and other Metabolites from Mushrooms against Skin Disorders- A Systematic Review Assessing their Cosmeceutical and Nutricosmetic Outcomes. Current Medicinal Chemistry, 2020, 27, 6926-6965.	2.4	7
772	Magnetoliposomes Based on Magnetic/Plasmonic Nanoparticles Loaded with Tricyclic Lactones for Combined Cancer Therapy. Pharmaceutics, 2021, 13, 1905.	4.5	7
773	Basidiocarp structures of Lentinus crinitus: an antimicrobial source against foodborne pathogens and food spoilage microorganisms. World Journal of Microbiology and Biotechnology, 2022, 38, 74.	3.6	7
774	Bioaccessibility of Macrominerals and Trace Elements from Tomato (Solanum lycopersicum L.) Farmers' Varieties. Foods, 2022, 11, 1968.	4.3	7

#	Article	lF	CITATIONS
775	Using molecular docking to investigate the anti-breast cancer activity of low molecular weight compounds present on wild mushrooms. SAR and QSAR in Environmental Research, 2011, 22, 315-328.	2.2	6
776	Analytical Tools Used to Distinguish Chemical Profiles of Plants Widely Consumed as Infusions and Dietary Supplements: Artichoke, Milk Thistle, and Borututu. Food Analytical Methods, 2014, 7, 1604-1611.	2.6	6
777	New insights into the effects of formulation type and compositional mixtures on the antioxidant and cytotoxic activities of dietary supplements based-on hepatoprotective plants. Food and Function, 2014, 5, 2052-2060.	4.6	6
778	Nutritional and Biochemical Profiling of Leucopaxillus candidus (Bres.) Singer Wild Mushroom. Molecules, 2016, 21, 99.	3.8	6
779	Minerals and vitamin B9 in dried plants vs. infusions: Assessing absorption dynamics of minerals by membrane dialysis tandem in vitro digestion. Food Bioscience, 2016, 13, 9-14.	4.4	6
780	Detailed phytochemical characterization and bioactive properties of Myrtus nivelii Batt & Trab. Food and Function, 2017, 8, 3111-3119.	4.6	6
781	Inhibition of tumour and non-tumour cell proliferation by pygidial gland secretions of four ground beetle species (Coleoptera: Carabidae). Biologia (Poland), 2018, 73, 787-792.	1.5	6
782	Chemical characterization and biological activities of two varieties of xoconostle fruits <i>Opuntia joconostle</i> F.A.C. Weber ex Diguet and <i>Opuntia matudae</i> Scheinvar. Food and Function, 2019, 10, 3181-3187.	4.6	6
783	Phenolic profile and effects of acetone fractions obtained from the inflorescences of Calluna vulgaris (L.) Hull on vaginal pathogenic and non-pathogenic bacteria. Food and Function, 2019, 10, 2399-2407.	4.6	6
784	Whey protein supplement as a source of microencapsulated PUFA-rich vegetable oils. Food Bioscience, 2020, 37, 100690.	4.4	6
785	Nanohydroxyapatite (n-HAp) as a pickering stabilizer in oil-in-water (O/W) emulsions: a stability study. Journal of Dispersion Science and Technology, 2022, 43, 814-826.	2.4	6
786	<i>Castanea sativa</i> male flower extracts as an alternative additive in the Portuguese pastry delicacy "pastel de nataâ€. Food and Function, 2020, 11, 2208-2217.	4.6	6
787	Application of PEG400 in the one-pot synthesis of 7-[4-alkyl- or (hetero)aryl-1H-1,2,3-triazol-1-yl]thieno[3,2-b]pyridines via SNAr and Cu(I)-Catalyzed Azide-Alkyne Cycloaddition and preliminary evaluation of their anti-tumour activity. Tetrahedron Letters, 2020, 61, 151900	1.4	6
788	Differences in the phenolic composition and nutraceutical properties of freeze dried and oven-dried wild and domesticated samples of Sanguisorba minor Scop. LWT - Food Science and Technology, 2021, 145, 111335.	5.2	6
789	Roots and rhizomes of wild Asparagus: Nutritional composition, bioactivity and nanoencapsulation of the most potent extract. Food Bioscience, 2022, 45, 101334.	4.4	6
790	Flow of Red Blood Cells Suspensions Through Hyperbolic Microcontractions. Lecture Notes in Computational Vision and Biomechanics, 2014, , 151-163.	0.5	6
791	Mushrooms bio-residues valorisation: Optimisation of ergosterol extraction using response surface methodology. Food and Bioproducts Processing, 2020, 122, 183-192.	3.6	6
792	Ellagitannin-rich bioactive extracts of Tuberaria lignosa: insights into the radiation-induced effects in the recovery of high added-value compounds. Food and Function, 2017, 8, 2485-2499.	4.6	6

#	Article	IF	CITATIONS
793	Bioactivity of the Geranium Genus: A Comprehensive Review. Current Pharmaceutical Design, 2020, 26, 1838-1865.	1.9	6
794	Valorization of Juglans regia Leaves as Cosmeceutical Ingredients: Bioactivity Evaluation and Final Formulation Development. Antioxidants, 2022, 11, 677.	5.1	6
795	Chemical composition of cardoon (Cynara cardunculus L. var. altilis) petioles as affected by plant growth stage. Food Research International, 2022, 156, 111330.	6.2	6
796	Antioxidant activity of aminodiarylamines in the thieno[3,2- <i>b</i>]pyridine series: radical scavenging activity, lipid peroxidation inhibition and redox profile. Journal of Enzyme Inhibition and Medicinal Chemistry, 2014, 29, 311-316.	5.2	5
797	Suillus luteus methanolic extract inhibits proliferation and increases expression of p-H2A.X in a non-small cell lung cancer cell line. Journal of Functional Foods, 2014, 6, 100-106.	3.4	5
798	Synthesis, Characterization, Antimicrobial and Antitumor Activities of Sucrose Octa(N-ethyl)carbamate. Medicinal Chemistry, 2016, 12, 22-29.	1.5	5
799	Antioxidant Potential of Wild Plant Foods. , 2016, , 209-232.		5
800	Evaluation of Arenaria montana L. hydroethanolic extract as a chemopreventive food ingredient: A case study focusing a dairy product (yogurt). Journal of Functional Foods, 2017, 38, 214-220.	3.4	5
801	Mathematical models of cytotoxic effects in endpoint tumor cell line assays: critical assessment of the application of a single parametric value as a standard criterion to quantify the dose–response effects and new unexplored proposal formats. Analyst, The, 2017, 142, 4124-4141.	3.5	5
802	Chemical and physicochemical changes in Serrana goat cheese submitted to extra-long ripening periods. LWT - Food Science and Technology, 2018, 87, 33-39.	5.2	5
803	Stability assessment of extracts obtained from Arbutus unedo L. fruits in powder and solution systems using machine-learning methodologies. Food Chemistry, 2020, 333, 127460.	8.2	5
804	Evaluating Skin Sensitization Via Soft and Hard Multivariate Modeling. International Journal of Toxicology, 2020, 39, 547-559.	1.2	5
805	Bioactivity screening of pinhão (<i>Araucaria Angustifolia</i> (Bertol.) Kuntze) seed extracts: the inhibition of cholinesterases and α-amylases, and cytotoxic and anti-inflammatory activities. Food and Function, 2021, 12, 9820-9828.	4.6	5
806	Effects of Growing Substrate and Nitrogen Fertilization on the Chemical Composition and Bioactive Properties of Centaurea raphanina ssp. mixta (DC.) Runemark. Agronomy, 2021, 11, 576.	3.0	5
807	Antioxidant and Antimicrobial Influence on Oyster Mushrooms (Pleurotus ostreatus) from Substrate Supplementation of Calcium Silicate. Sustainability, 2021, 13, 5019.	3.2	5
808	Development of a Natural Preservative from Chestnut Flowers: Ultrasound-Assisted Extraction Optimization and Functionality Assessment. Chemosensors, 2021, 9, 141.	3.6	5
809	Halophytes for Future Horticulture. , 2020, , 1-28.		5
810	Sequential steps of the incorporation of bioactive plant extracts from wild Italian Plantago coronopus L. and Cichorium intybus L. leaves in fresh egg pasta. Food Chemistry, 2022, 384, 132462.	8.2	5

#	Article	IF	CITATIONS
811	Phenolic Composition and Antioxidant, Anti-Inflammatory, Cytotoxic, and Antimicrobial Activities of Cardoon Blades at Different Growth Stages. Biology, 2022, 11, 699.	2.8	5
812	Antioxidants in Pinus pinaster roots and mycorrhizal fungi during the early steps of symbiosis. Industrial Crops and Products, 2012, 38, 99-106.	5.2	4
813	How gamma-rays and electron-beam irradiation would affect the antimicrobial activity of differently processed wild mushroom extracts?. Journal of Applied Microbiology, 2015, 118, 592-598.	3.1	4
814	Leccinum molle (Bon) Bon and Leccinum vulpinum Watling: The First Study of Their Nutritional and Antioxidant Potential. Molecules, 2016, 21, 246.	3.8	4
815	Southwestern Oncology Group pretreatment risk criteria as predictive or prognostic factors in acute myeloid leukemia. Molecular and Clinical Oncology, 2017, 6, 384-388.	1.0	4
816	Susceptibility testing of Candida albicans and Candida glabrata to Glycyrrhiza glabra L Industrial Crops and Products, 2017, 108, 480-484.	5.2	4
817	Development of Functional Dairy Foods. Reference Series in Phytochemistry, 2018, , 1-19.	0.4	4
818	A Tailor-Made Protocol to Synthesize Yolk-Shell Graphene-Based Magnetic Nanoparticles for Nanomedicine. Journal of Carbon Research, 2018, 4, 55.	2.7	4
819	Isolation of secondary metabolites from Geranium molle L. with anticancer potential. Industrial Crops and Products, 2019, 142, 111859.	5.2	4
820	Development of Functional Dairy Foods. Reference Series in Phytochemistry, 2019, , 1377-1395.	0.4	4
821	Editorial: Bioactive Phytochemicals in Asteraceae: Structure, Function, and Biological Activity. Frontiers in Plant Science, 2019, 10, 1464.	3.6	4
822	The Sustainable Use of Cotton, Hazelnut and Ground Peanut Waste in Vegetable Crop Production. Sustainability, 2020, 12, 8511.	3.2	4
823	Phenolic Profile of Croton urucurana Baill. Leaves, Stems and Bark: Pairwise Influence of Drying Temperature and Extraction Solvent. Molecules, 2020, 25, 2032.	3.8	4
824	The influence of Castanea sativa Mill. flower extract on hormonally and chemically induced prostate cancer in a rat model. Food and Function, 2021, 12, 2631-2643.	4.6	4
825	Phytochemical Characterization and Evaluation of Bioactive Properties of Tisanes Prepared from Promising Medicinal and Aromatic Plants. Foods, 2021, 10, 475.	4.3	4
826	Valorization of Cereal By-Products from the Milling Industry as a Source of Nutrients and Bioactive Compounds to Boost Resource-Use Efficiency. Agronomy, 2021, 11, 972.	3.0	4
827	Chemical Composition and Bioactive Properties of Purple French Bean (Phaseolus vulgaris L.) as Affected by Water Deficit Irrigation and Biostimulants Application. Sustainability, 2021, 13, 6869.	3.2	4
828	Characterization of Nonconventional Food Plants Seeds Guizotia abyssinica (L.f.) Cass., Panicum miliaceum L., and Phalaris canariensis L. for Application in the Bakery Industry. Agronomy, 2021, 11, 1873.	3.0	4

#	Article	IF	CITATIONS
829	Compositional features and biological activities of wild and commercial Moringa oleifera leaves from Guinea-Bissau. Food Bioscience, 2021, 43, 101300.	4.4	4
830	Photochemical /Photocytotoxicity Studies of New Tetrapyrrolic Structures as Potential Candidates for Cancer Theranostics. Current Drug Discovery Technologies, 2020, 17, 661-669.	1.2	4
831	Evaluation of parasite and host phenolic composition and bioactivities â~' The Practical Case of Cytinus hypocistis (L.) L. and Halimium lasianthum (Lam.) Greuter. Industrial Crops and Products, 2022, 176, 114343.	5.2	4
832	Plants of the Family Asteraceae: Evaluation of Biological Properties and Identification of Phenolic Compounds. Chemistry Proceedings, 2021, 5, .	0.1	4
833	Water-in-Oil-in-Water Double Emulsions as Protective Carriers for Sambucus nigra L. Coloring Systems. Molecules, 2022, 27, 552.	3.8	4
834	Chemical, Cytotoxic, and Anti-Inflammatory Assessment of Honey Bee Venom from Apis mellifera intermissa. Antibiotics, 2021, 10, 1514.	3.7	4
835	1-Aryl-3-[4-(thieno[3,2- <i>d</i>]pyrimidin-4-yloxy)phenyl]ureas as VEGFR-2 Tyrosine Kinase Inhibitors: Synthesis, Biological Evaluation, and Molecular Modelling Studies. BioMed Research International, 2013, 2013, 1-9.	1.9	3
836	ICT for governance in combating corruption. , 2014, , .		3
837	Editorial: Phytochemicals and their Effects on Human Health. Current Pharmaceutical Design, 2017, 23, 2695-2696.	1.9	3
838	Evaluation of gamma-irradiated aromatic herbs: Chemometric study of samples submitted to extended storage periods. Food Research International, 2018, 111, 272-280.	6.2	3
839	Artificial Antioxidants. , 2019, , 283-290.		3
840	Wild greens used in the Mediterranean diet. , 2020, , 209-228.		3
841	Effect of Natural Preservatives on the Nutritional Profile, Chemical Composition, Bioactivity and Stability of a Nutraceutical Preparation of Aloe arborescens. Antioxidants, 2020, 9, 281.	5.1	3
842	Toxicological and anti-tumor effects of a linden extract (Tilia platyphyllos Scop.) in a HPV16-transgenic mouse model. Food and Function, 2021, 12, 4005-4014.	4.6	3
843	Halophytes for Future Horticulture. , 2021, , 2367-2393.		3
844	Bioactive and Nutritional Potential of Medicinal and Aromatic Plant (MAP) Seasoning Mixtures. Molecules, 2021, 26, 1587.	3.8	3
845	A Case Study on Surplus Mushrooms Production: Extraction and Recovery of Vitamin D2. Agriculture (Switzerland), 2021, 11, 579.	3.1	3
846	Chemical Features and Bioactivities of Lactuca canadensis L., an Unconventional Food Plant from Brazilian Cerrado. Agriculture (Switzerland), 2021, 11, 734.	3.1	3

#	Article	IF	CITATIONS
847	Bioactive Compounds of Chestnut (Castanea sativa Mill.). Reference Series in Phytochemistry, 2020, , 303-313.	0.4	3
848	Photochemistry and Photophysics of Thienocarbazoles¶. Photochemistry and Photobiology, 2003, 77, 121.	2.5	3
849	Oxypropylation of Brazilian Pine-Fruit Shell Evaluated by Principal Component Analysis. Journal of Renewable Materials, 2018, 6, 715-723.	2.2	3
850	Bioactive Compound Profiling and Nutritional Composition of Three Species from the Amaranthaceae Family. , 2021, 5, .		3
851	L. exerts antineurodegenerative and antioxidant activities and induces prooxidant effect in glioblastoma cell line EXCLI Journal, 2022, 21, 387-399.	0.7	3
852	Bioactive Compounds and Functional Properties of Herbal Preparations of Cystus creticus L. Collected From Rhodes Island. Frontiers in Nutrition, 2022, 9, .	3.7	3
853	Sonoextraction of phenolic compounds and saponins from Aesculus hippocastanum seed kernels: Modeling and optimization. Industrial Crops and Products, 2022, 185, 115142.	5.2	3
854	The Bioactivities and Chemical Profile of Turnip-Rooted Parsley Germplasm. Horticulturae, 2022, 8, 639.	2.8	3
855	Study of (R = Y, Ho) compounds by neutron powder diffraction, ac susceptibility and magnetization. Journal of Physics Condensed Matter, 1999, 11, 687-701.	1.8	2
856	Food Additives: Classification, Regulation and Analysis â~†. , 2017, , 419-419.		2
857	Cytotoxicity and anti-inflammatory activities of <i>Gallesia integrifolia</i> (Phytolaccaceae) fruit essential oil. Natural Product Research, 2022, 36, 2878-2883.	1.8	2
858	Synthesis of Novel Methyl 7-[(Hetero)arylamino]thieno[2,3-b]pyrazine-6-carboxylates and Antitumor Activity Evaluation: Effects in Human Tumor Cells Growth, Cell Cycle Analysis, Apoptosis and Toxicity in Non-Tumor Cells. Molecules, 2021, 26, 4823.	3.8	2
859	β-Carotene colouring systems based on solid lipid particles produced by hot melt dispersion. Food Control, 2021, 129, 108262.	5.5	2
860	Infusion of aerial parts of Salvia chudaei Batt. & Trab. from Algeria: Chemical, toxicological and bioactivities characterization. Journal of Ethnopharmacology, 2021, 280, 114455.	4.1	2
861	Chemical composition and bioactive properties of Cichorium spinosum L. in relation to nitrate/ammonium nitrogen ratio. , 2019, 99, 6741.		2
862	Plantas aromáticas usadas como condimentos: prevalência de ácidos gordos polinsaturados. Revista De Ciências Agrárias, 2017, 40, S155-S159.	0.2	2
863	An Upcoming Approach to Alzheimer's Disease: Ethnopharmacological Potential of Plant Bioactive Molecules. Current Medicinal Chemistry, 2020, 27, 4344-4371.	2.4	2
864	Identification, Quantification, and Method Validation of Anthocyanins. , 2021, 5, .		2

49

#	Article	IF	CITATIONS
865	<i>Arbutus unedo</i> leaf extracts as potential dairy preservatives: case study on quark cheese. Food and Function, 2022, 13, 5442-5454.	4.6	2
866	Flavonoids: A Group of Potential Food Additives with Beneficial Health Effects. , 0, , .		2
867	The Phenolic Composition of Hops (Humulus lupulus L.) Was Highly Influenced by Cultivar and Year and Little by Soil Liming or Foliar Spray Rich in Nutrients or Algae. Horticulturae, 2022, 8, 385.	2.8	2
868	Study of RFe9.5Mo2.5H (R=Y, Dy, Ho, Er) and RFe9.5Mo2.5N (R=Y, Dy) compounds by Mössbauer spectroscopy, magnetisation and neutron powder diffraction. Journal of Magnetism and Magnetic Materials, 2000, 213, 293-303.	2.3	1
869	Evaluation of the chemical interactions in co-culture elements of Castanea sativa Miller mycorrhization. Industrial Crops and Products, 2013, 42, 105-112.	5.2	1
870	Intersubject Variability of Blood Analysis Reference Values: Assessment of Age and Locality Influence by Means of a Linear Discriminant Analysis Model. Journal of Clinical Laboratory Analysis, 2013, 27, 237-244.	2.1	1
871	Bioactive Natural Matrices and Compounds. BioMed Research International, 2014, 2014, 1-2.	1.9	1
872	Secondary Hemophagocytic Syndrome: The Importance of Clinical Suspicion. Case Reports in Hematology, 2014, 2014, 1-5.	0.4	1
873	Effects of different culture conditions on biological potential and metabolites production in three <i>Penicillium</i> isolates. Drug Development and Industrial Pharmacy, 2015, 41, 253-262.	2.0	1
874	Synthesis of Cadmium Selenide Quantum Dots, Using 2,2â€Bipyridine as a Capping and Phase Transfer Agent. ChemistrySelect, 2017, 2, 1271-1274.	1.5	1
875	Cytotoxic Terphenyl Neolignans from Fungus Terana coerulea: New Natural Corticins D and E, and Revised Structure for Corticin A. Natural Product Communications, 2017, 12, 1934578X1701200.	0.5	1
876	Watercress., 2020,, 197-219.		1
877	Bioactive Compounds of Chestnut (Castanea sativa Mill.). Reference Series in Phytochemistry, 2020, , 1-11.	0.4	1
878	Food industry by-products valorization and new ingredients. , 2020, , 71-99.		1
879	Preservation of Chocolate Muffins with Lemon Balm, Oregano, and Rosemary Extracts. Foods, 2021, 10, 165.	4.3	1
880	CHAPTER 3. Phenolic Compounds: Flavonoids in Legumes. Food Chemistry, Function and Analysis, 2019, , 49-83.	0.2	1
881	Docking studies to evaluate mushrooms low molecular weight compounds as inhibitors of the anti-apoptotic protein BCL-2. Planta Medica, 2012, 78, .	1.3	1
882	Variation in organic acids content in Tuberaria lignosa extracts induced by ionizing radiation and extraction procedures. Planta Medica, 2014, 80, .	1.3	1

#	Article	IF	CITATIONS
883	Antifungal activity against Candida species and phenolic characterization of decoction, infusion and hydroalcoholic extract of cultivated Salvia officinalis L Planta Medica, 2014, 80, .	1.3	1
884	Borututu, artichoke and milk thistle: Chemical profiles, antioxidant properties, anti-hepatocellular carcinoma activity and hepatotoxicity. Planta Medica, 2014, 80, .	1.3	1
885	Antimicrobial Activity of Aqueous Plant Extracts as Potential Natural Additives. Proceedings (mdpi), 2020, 70, .	0.2	1
886	Recovery of Phenolic Compounds from Edible Algae Using High Hydrostatic Pressure: An Optimization Approach. Proceedings (mdpi), 2021, 70, 110.	0.2	1
887	A Step Forward Towards Exploring Nutritional and Biological Potential of Mushrooms: A Case Study of <i>Calocybe gambosa</i> (Fr.) Donk Wild Growing in Serbia. Polish Journal of Food and Nutrition Sciences, 2022, , 17-26.	1.7	1
888	Optimization through Response Surface Methodology of Dynamic Maceration of Olive (Olea europaea) Tj ETQqQ) 0 0 rgBT	/Oyerlock 10
889	Improving the physicochemical properties of a traditional Portuguese cake – "económicos―with chestnut flour. Food and Function, 0, , .	4.6	1
890	Novel Synthetic Routes to Thienocarbazoles via Palladium- or Copper-Catalyzed Amination or Amidation of Aryl Halides and Intramolecular Cyclization ChemInform, 2003, 34, no.	0.0	0
891	Synthesis of Diarylamines in the Benzo[b]thiophene Series Bearing Electron Donating or Withdrawing Groups by Buchwald—Hartwig C—N Coupling ChemInform, 2003, 34, no.	0.0	0
892	Tandem-Palladium-Catalyzed Borylation and Suzuki Coupling (BSC) to Thienocarbazole Precursors ChemInform, 2003, 34, no.	0.0	0
893	Palladium-Catalyzed Amination and Cyclization to Heteroanellated Indoles and Carbazoles ChemInform, 2003, 34, no.	0.0	0
894	Atherosclerosis risk in antiphospholipid syndrome. International Journal of Clinical Rheumatology, 2011, 6, 583-593.	0.3	0
895	Expression of Concern: Segneanu et al. Helleborus purpurascens—Amino Acid and Peptide Analysis Linked to the Chemical and Antiproliferative Properties of the Extracted Compounds. Molecules 2015, 20, 22170–22187. Molecules, 2016, 21, 725.	3.8	0
896	Effect of storage on quality features of local onion landrace †Vatikiotiko'. Acta Horticulturae, 2016, , 125-132.	0.2	0
897	Removal of Expression of Concern: Segneanu et al. Helleborus purpurascens—Amino Acid and Peptide Analysis Linked to the Chemical and Antiproliferative Properties of the Extracted Compounds. Molecules 2015, 20, 22170–22187. Molecules, 2018, 23, 136.	3.8	0
898	Chemical composition and yield of onion under different fertilizer regimes. Acta Horticulturae, 2019, , 73-80.	0.2	0
899	Strategic Alignment through Organizational Modeling: A Case Study in a Public Institution. Communications in Computer and Information Science, 2011, , 129-138.	0.5	0
900	What Service?. Communications in Computer and Information Science, 2011, , 315-324.	0.5	0

#	Article	IF	CITATIONS
901	The Relevance of Results in Interpretive Research in Information Systems and Technology. Communications in Computer and Information Science, 2012, , 80-89.	0.5	0
902	Analysis of phenolic compounds in flowers from wild medicinal plants from northeastern Portugal. Planta Medica, 2012, 78, .	1.3	0
903	Analysis of phenolic, polysaccharidic and lipidic fractions of mushrooms from northeast Portugal. Planta Medica, 2012, 78, .	1.3	0
904	Cistus ladanifer as a source of phenolic compounds with antifungal activity. Planta Medica, 2012, 78, .	1.3	0
905	Phenolic profiling of Silybum marianum (L.) Gaertn (milk thistle) by HPLC-DAD-ESI/MS. Planta Medica, 2014, 80, .	1.3	0
906	Electron-beam irradiation at low doses preserves dietary fiber content in Boletus edulis Bull.: Fr. wild mushroom. Planta Medica, 2014, 80, .	1.3	0
907	Suillus granulatus (L.) Roussel as a source of bioactive compounds: Comparative study between mushrooms from different origins. Planta Medica, 2014, 80, .	1.3	0
908	Antioxidant activity and phenolic profile of commercial and wild roots of Fragaria vesca. Planta Medica, 2014, 80, .	1.3	0
909	Chemical characterization and antioxidant activity of three mushroom species from Poland. Planta Medica, 2014, 80, .	1.3	0
910	Individual phenolic profile and antioxidant activity of vegetative parts from cultivated or wild growing Fragaria vesca L Planta Medica, 2014, 80, .	1.3	0
911	A cold methanolic extract of Ganoderma lucidum (Curtis) P. Karst induces autophagy in a gastric cancer cell line. Planta Medica, 2014, 80, .	1.3	0
912	Comparative bioactive properties of Coprinopsis atramentaria extract, organic acids and synthesized derivatives. Planta Medica, 2014, 80, .	1.3	0
913	Chemical profiling and assessment of neurobiological properties of Veronica teucrium and Veronica jacquinii methanolic extracts. Planta Medica, 2016, 81, S1-S381.	1.3	0
914	A comparison study of the nutritional, mineral and volatile compositions of three dry forms of ginger rhizomes, and antioxidant properties of their ethanolic and aqueous extracts. Journal of Coastal Life Medicine, 2017, 5, 70-76.	0.2	0
915	Active Learning Successful Case Studies. , 0, , .		0
916	Betalains. , 2022, , 461-507.		0
917	Red Algae as Source of Nutrients with Antioxidant and Antimicrobial Potential. Proceedings (mdpi), 2020, 70, .	0.2	0
918	Phenolic Compounds from Amaranthaceae Family as Potential Antitumor and Antibacterial Drugs. , 2021, 9, .		0

#	Article	IF	CITATIONS
919	Nutritional Composition and Biological Activity of Goldenberry (Physalis peruviana L.): An Emerging Fruit Crop in Portugal. , 2021, 6, .		Ο
920	Comparison between Different Extraction Methods in the Recovery of Bioactive Molecules from Melissa officinalis L. under Sustainable Cultivation: Chemical and Bioactive Characterization. , 2022, 11, .		0
921	Optimization of Pinhão Extract Encapsulation by Solid Dispersion and Application to Cookies as a Bioactive Ingredient. Food and Bioprocess Technology, 0, , .	4.7	0
922	Biochemical Approaches on Commercial Strains of Agaricus subrufescens Growing under Two Environmental Cultivation Conditions. Journal of Fungi (Basel, Switzerland), 2022, 8, 616.	3.5	0