Wanquan Liu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9531896/wanquan-liu-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

2,037 179 20 39 h-index g-index citations papers 5.28 2,505 200 3.4 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
179	A Novel Approach to the Extraction of Key Points from 3D Rigid Point Cloud Using 2D Images Transformation. <i>IEEE Transactions on Geoscience and Remote Sensing</i> , 2022 , 1-1	8.1	
178	An approach to boundary detection for 3D point clouds based on DBSCAN clustering. <i>Pattern Recognition</i> , 2021 , 108431	7.7	6
177	An Efficient Newton-Based Method for Sparse Generalized Canonical Correlation Analysis. <i>IEEE Signal Processing Letters</i> , 2021 , 1-1	3.2	
176	Deep Canonical Correlation Analysis Using Sparsity Constrained Optimization for Nonlinear Process Monitoring. <i>IEEE Transactions on Industrial Informatics</i> , 2021 , 1-1	11.9	
175	3D Reconstruction of Unstructured Objects Using Information From Multiple Sensors. <i>IEEE Sensors Journal</i> , 2021 , 1-1	4	1
174	Semisupervised Learning on Graphs With an Alternating Diffusion Process. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2021 , 32, 2862-2874	10.3	1
173	Application of Inertial Measurement Units and Machine Learning Classification in Cerebral Palsy: Randomized Controlled Trial. <i>JMIR Rehabilitation and Assistive Technologies</i> , 2021 , 8, e29769	3.2	O
172	An efficient non-convex total variation approach for image deblurring and denoising. <i>Applied Mathematics and Computation</i> , 2021 , 397, 125977	2.7	5
171	Data-Driven Process Monitoring Using Structured Joint Sparse Canonical Correlation Analysis. <i>IEEE Transactions on Circuits and Systems II: Express Briefs</i> , 2021 , 68, 361-365	3.5	10
170	A Data-Driven Modeling Method for Stochastic Nonlinear Degradation Process With Application to RUL Estimation. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems,</i> 2021 , 1-12	7.3	2
169	. IEEE Transactions on Instrumentation and Measurement, 2021 , 70, 1-11	5.2	7
168	Densely connected convolutional networks for vibration based structural damage identification. Engineering Structures, 2021 , 245, 112871	4.7	4
167	. IEEE Transactions on Industrial Electronics, 2021 , 68, 11587-11597	8.9	1
166	An accelerated monotonic convergent algorithm for a class of non-Lipschitzian NCP(F) involving an M-matrix. <i>Journal of Computational and Applied Mathematics</i> , 2021 , 397, 113624	2.4	1
165	tSSNALM: A fast two-stage semi-smooth Newton augmented Lagrangian method for sparse CCA. <i>Applied Mathematics and Computation</i> , 2020 , 383, 125272	2.7	
164	Deep residual network framework for structural health monitoring. <i>Structural Health Monitoring</i> , 2020 , 147592172091837	4.4	18
163	Haze pollution causality mining and prediction based on multi-dimensional time series with PS-FCM. <i>Information Sciences</i> , 2020 , 523, 307-317	7.7	5

(2019-2020)

162	An Automatic Registration Approach to Laser Point Sets Based on Multidiscriminant Parameter Extraction. <i>IEEE Transactions on Instrumentation and Measurement</i> , 2020 , 69, 9449-9464	5.2	6	
161	An advisable facial semantic characterization based on Axiomatic Fuzzy Set theory and information granules. <i>Information Sciences</i> , 2020 , 523, 133-151	7.7		
160	Explicit Iterative Algorithms for Continuous Coupled Lyapunov Matrix Equations. <i>IEEE Transactions on Automatic Control</i> , 2020 , 65, 3631-3638	5.9	4	
159	A semantic facial expression intensity descriptor based on information granules. <i>Information Sciences</i> , 2020 , 528, 113-132	7.7	1	
158	The Chan-Vese Model With Elastica and Landmark Constraints for Image Segmentation. <i>IEEE Access</i> , 2020 , 1-1	3.5	1	
157	AFSSE: An Interpretable Classifier With Axiomatic Fuzzy Set and Semantic Entropy. <i>IEEE Transactions on Fuzzy Systems</i> , 2020 , 28, 2825-2840	8.3	2	
156	A Novel Euler Elastica-Based Segmentation Approach for Noisy Images Using the Progressive Hedging Algorithm. <i>Journal of Mathematical Imaging and Vision</i> , 2020 , 62, 98-119	1.6	О	
155	Laplacian regularized robust principal component analysis for process monitoring. <i>Journal of Process Control</i> , 2020 , 92, 212-219	3.9	17	
154	Information Granules-Based BP Neural Network for Long-Term Prediction of Time Series. <i>IEEE Transactions on Fuzzy Systems</i> , 2020 , 1-1	8.3	4	
153	A Hybrid Framework for Underwater Image Enhancement. <i>IEEE Access</i> , 2020 , 8, 197448-197462	3.5	5	
152	A novel level set approach for image segmentation with landmark constraints. <i>Optik</i> , 2019 , 182, 257-268	82.5	6	
151	Semantics characterization for eye shapes based on directional triangle-area curve clustering. <i>Multimedia Tools and Applications</i> , 2019 , 78, 25373-25406	2.5	4	
150	Alternating direction method of multipliers for nonconvex fused regression problems. <i>Computational Statistics and Data Analysis</i> , 2019 , 136, 59-71	1.6	7	
149	Expression of Concern: Facial feature discovery for ethnicity recognition. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2019 , 9, e1278	6.9	9	
148	Image retrieval based on effective feature extraction and diffusion process. <i>Multimedia Tools and Applications</i> , 2019 , 78, 6163-6190	2.5	17	
147	Automatic prostate segmentation based on fusion between deep network and variational methods. <i>Journal of X-Ray Science and Technology</i> , 2019 , 27, 821-837	2.1	6	
146	A fast computational approach for illusory contour reconstruction. <i>Multimedia Tools and Applications</i> , 2019 , 78, 10449-10472	2.5	3	
145	Facial semantic descriptors based on information granules. <i>Information Sciences</i> , 2019 , 479, 335-354	7.7	14	

144	Face feature extraction and recognition via local binary pattern and two-dimensional locality preserving projection. <i>Multimedia Tools and Applications</i> , 2019 , 78, 14971-14987	2.5	3
143	Development and application of a deep learningBased sparse autoencoder framework for structural damage identification. <i>Structural Health Monitoring</i> , 2019 , 18, 103-122	4.4	51
142	Image-set based face recognition using K-SVD dictionary learning. <i>International Journal of Machine Learning and Cybernetics</i> , 2019 , 10, 1051-1064	3.8	13
141	Face recognition against illuminations using two directional multi-level threshold-LBP and DCT. <i>Multimedia Tools and Applications</i> , 2018 , 77, 25659-25679	2.5	2
140	Image Segmentation via the Continuous Max-Flow Method Based on Chan-Vese Model. <i>Communications in Computer and Information Science</i> , 2018 , 232-242	0.3	1
139	Multiplicative Noise Removal Based on Total Generalized Variation. <i>Communications in Computer and Information Science</i> , 2018 , 43-54	0.3	1
138	Image Segmentation with Depth Information via Simplified Variational Level Set Formulation. <i>Journal of Mathematical Imaging and Vision</i> , 2018 , 60, 1-17	1.6	15
137	A single gallery-based face recognition using extended joint sparse representation. <i>Applied Mathematics and Computation</i> , 2018 , 320, 99-115	2.7	11
136	A hybrid CNN feature model for pulmonary nodule malignancy risk differentiation. <i>Journal of X-Ray Science and Technology</i> , 2018 , 26, 171-187	2.1	32
135	Structural damage identification based on autoencoder neural networks and deep learning. <i>Engineering Structures</i> , 2018 , 172, 13-28	4.7	140
135		4·7 7·7	140
	Engineering Structures, 2018 , 172, 13-28		
134	Engineering Structures, 2018, 172, 13-28 Affinity learning via a diffusion process for subspace clustering. Pattern Recognition, 2018, 84, 39-50 Color image restoration and inpainting via multi-channel total curvature. Applied Mathematical	7.7	18
134 133	Affinity learning via a diffusion process for subspace clustering. <i>Pattern Recognition</i> , 2018 , 84, 39-50 Color image restoration and inpainting via multi-channel total curvature. <i>Applied Mathematical Modelling</i> , 2018 , 61, 280-299 Face recognition based on manifold constrained joint sparse sensing with K-SVD. <i>Multimedia Tools</i>	7.7 4.5	18
134 133 132	Affinity learning via a diffusion process for subspace clustering. <i>Pattern Recognition</i> , 2018 , 84, 39-50 Color image restoration and inpainting via multi-channel total curvature. <i>Applied Mathematical Modelling</i> , 2018 , 61, 280-299 Face recognition based on manifold constrained joint sparse sensing with K-SVD. <i>Multimedia Tools and Applications</i> , 2018 , 77, 28863-28883	7·7 4·5 2·5	18 13 5
134 133 132	Affinity learning via a diffusion process for subspace clustering. <i>Pattern Recognition</i> , 2018 , 84, 39-50 Color image restoration and inpainting via multi-channel total curvature. <i>Applied Mathematical Modelling</i> , 2018 , 61, 280-299 Face recognition based on manifold constrained joint sparse sensing with K-SVD. <i>Multimedia Tools and Applications</i> , 2018 , 77, 28863-28883 A Bayesian Scene-Prior-Based Deep Network Model for Face Verification. <i>Sensors</i> , 2018 , 18,	7·7 4·5 2·5	18 13 5
134 133 132 131	Affinity learning via a diffusion process for subspace clustering. Pattern Recognition, 2018, 84, 39-50 Color image restoration and inpainting via multi-channel total curvature. Applied Mathematical Modelling, 2018, 61, 280-299 Face recognition based on manifold constrained joint sparse sensing with K-SVD. Multimedia Tools and Applications, 2018, 77, 28863-28883 A Bayesian Scene-Prior-Based Deep Network Model for Face Verification. Sensors, 2018, 18, A multichannel total variational Retinex model based on nonlocal differential operators 2018, An ICA-Based Other-Race Effect Elimination for Facial Expression Recognition. Lecture Notes in	7·7 4·5 2·5 3.8	18 13 5 3

(2016-2017)

126	Tracking human poses in various scales with accurate appearance. <i>International Journal of Machine Learning and Cybernetics</i> , 2017 , 8, 1667-1680	3.8	1
125	Multi-ethnic facial features extraction based on axiomatic fuzzy set theory. <i>Neurocomputing</i> , 2017 , 242, 161-177	5.4	12
124	Data-based controllability analysis for generalised linear discrete-time system. <i>International Journal of Systems Science</i> , 2017 , 48, 2104-2110	2.3	2
123	Face recognition against occlusions via colour fusion using 2D-MCF model and SRC. <i>Pattern Recognition Letters</i> , 2017 , 95, 14-21	4.7	5
122	Removal of Electrooculogram Artifacts from Electroencephalogram Using Canonical Correlation Analysis with Ensemble Empirical Mode Decomposition. <i>Cognitive Computation</i> , 2017 , 9, 626-633	4.4	20
121	Image Reconstruction via Manifold Constrained Convolutional Sparse Coding for Image Sets. <i>IEEE Journal on Selected Topics in Signal Processing</i> , 2017 , 11, 1072-1081	7.5	13
120	Towards Large Scale Spectral Problems via Diffusion Process 2017,		2
119	Complete characterization of the first descent point distribution for the k-error linear complexity of 2n-periodic binary sequences. <i>Advances in Mathematics of Communications</i> , 2017 , 11, 429-444	1.5	
118	Structure analysis on the k-error linear complexity for 2n-periodic binary sequences. <i>Journal of Industrial and Management Optimization</i> , 2017 , 13, 1743-1757	2	
117	Evaluation of K-SVD Embedded with Modified (ell _{1})-Norm Sparse Representation Algorithm. <i>Communications in Computer and Information Science</i> , 2017 , 84-93	0.3	
116	Linear quadratic regulation for discrete-time antilinear systems: An anti-Riccati matrix equation approach. <i>Journal of the Franklin Institute</i> , 2016 , 353, 1041-1060	4	9
115	Robust RGB-D face recognition using Kinect sensor. <i>Neurocomputing</i> , 2016 , 214, 93-108	5.4	12
114	Evaluation of K-SVD with different embedded sparse representation algorithms 2016,		1
113	Unsupervised manifold alignment using soft-assign technique. <i>Machine Vision and Applications</i> , 2016 , 27, 929-942	2.8	3
112	Fuzzy based affinity learning for spectral clustering. <i>Pattern Recognition</i> , 2016 , 60, 531-542	7.7	21
111	Face recognition based on Kinect. Pattern Analysis and Applications, 2016, 19, 977-987	2.3	13
110	The Non-convex Sparse Problem with Nonnegative Constraint for Signal Reconstruction. <i>Journal of Optimization Theory and Applications</i> , 2016 , 170, 1009-1025	1.6	1
109	Robust palmprint recognition based on the fast variation Vese®sher model. <i>Neurocomputing</i> , 2016 , 174, 999-1012	5.4	35

108	Controllability and dissipativity analysis for linear systems with derivative input. <i>Journal of the Franklin Institute</i> , 2016 , 353, 478-499	4	3
107	Implicit Iterative Algorithms for Continuous Markovian Jump Lyapunov Equations. <i>IEEE Transactions on Automatic Control</i> , 2016 , 61, 3183-3189	5.9	18
106	Semantic facial descriptor extraction via Axiomatic Fuzzy Set. <i>Neurocomputing</i> , 2016 , 171, 1462-1474	5.4	25
105	Characterization of the Third Descent Points for the k-error Linear Complexity of (2^n)-periodic Binary Sequences. <i>Lecture Notes in Computer Science</i> , 2016 , 169-183	0.9	
104	High Performance of RSA Simulation System Based on Modified Montgomery Algorithm. <i>Communications in Computer and Information Science</i> , 2016 , 398-408	0.3	
103	A Computational Other-Race-Effect Analysis for 3D Facial Expression Recognition. <i>Lecture Notes in Computer Science</i> , 2016 , 483-493	0.9	1
102	Discriminant auto encoders for face recognition with expression and pose variations 2016,		1
101	From low-level geometric features to high-level semantics: An axiomatic fuzzy set clustering approach. <i>Journal of Intelligent and Fuzzy Systems</i> , 2016 , 31, 775-786	1.6	3
100	Explicit iterative algorithms for solving coupled discrete-time Lyapunov matrix equations. <i>IET Control Theory and Applications</i> , 2016 , 10, 2565-2573	2.5	6
99	Color-based automatic quality control for roasting chicken. <i>Computers and Electronics in Agriculture</i> , 2016 , 123, 49-56	6.5	2
98	Automatic 4D Facial Expression Recognition Using DCT Features 2015,		13
97	State response for continuous-time antilinear systems. <i>IET Control Theory and Applications</i> , 2015 , 9, 123	18 <u>2.1</u> 524	48
96	Parameter selection for nonnegative l1 matrix/tensor sparse decomposition. <i>Operations Research Letters</i> , 2015 , 43, 423-426	1	18
95	Stochastic stability for discrete-time antilinear systems with Markovian jumping parameters. <i>IET Control Theory and Applications</i> , 2015 , 9, 1399-1410	2.5	4
94	Mixed-norm sparse representation for multi view face recognition. <i>Pattern Recognition</i> , 2015 , 48, 2935-	-2 9 .46	35
93	Fast algorithm for color texture image inpainting using the non-local CTV model. <i>Journal of Global Optimization</i> , 2015 , 62, 853-876	1.5	33
92	A new method for the selection of distribution centre locations. <i>IMA Journal of Management Mathematics</i> , 2015 , dpv021	1.4	3
91	A novel hierarchical approach for multispectral palmprint recognition. <i>Neurocomputing</i> , 2015 , 151, 511-	·5 3 .4	87

90	Geometric Reinforcement Learning for Path Planning of UAVs. <i>Journal of Intelligent and Robotic Systems: Theory and Applications</i> , 2015 , 77, 391-409	2.9	54	
89	Discriminative structure discovery via dimensionality reduction for facial image manifold. <i>Neural Computing and Applications</i> , 2015 , 26, 373-381	4.8	2	
88	Two directional multiple colour fusion for face recognition 2015,		2	
87	Visual Object Clustering via Mixed-Norm Regularization 2015,		1	
86	Stacked Face De-Noising Auto Encoders for Expression-Robust Face Recognition 2015,		6	
85	Monocular Human Motion Tracking with Non-Connected Body Part Dependency 2015,		1	
84	2015,		2	
83	2015,		3	
82	Optimal investment strategy on advertisement in duopoly. <i>Journal of Industrial and Management Optimization</i> , 2015 , 12, 625-636	2	3	
81	Fully automatic 3D facial expression recognition using local depth features 2014,		2	
80	Face recognition based on curvelets and local binary pattern features via using local property preservation. <i>Journal of Systems and Software</i> , 2014 , 95, 209-216	3.3	9	
79	The (k)-error linear complexity distribution for (2^n)-periodic binary sequences. <i>Designs, Codes, and Cryptography</i> , 2014 , 73, 55-75	1.2	8	
78	Unified optimization of (hbox {H}_{infty }) index and upper stability bound for singularly perturbed systems. <i>Optimization Letters</i> , 2014 , 8, 1889-1904	1.1	3	
77	Face Recognition via Curvelets and Local Ternary Pattern-Based Features. <i>IEICE Transactions on Information and Systems</i> , 2014 , E97.D, 1004-1007	0.6		
76	Accurate Facial Landmarks Detection for Frontal Faces with Extended Tree-Structured Models 2014 ,		10	
75	ROBUST FACE RECOGNITION BY UTILIZING COLOR INFORMATION AND SPARSE REPRESENTATION. International Journal of Pattern Recognition and Artificial Intelligence, 2014 , 28, 145	600 ¹ 4	4	
74	Dissipativity Analysis of Descriptor Systems Using Image Space Characterization. <i>Mathematical Problems in Engineering</i> , 2014 , 2014, 1-12	1.1	3	
73	Stochastic stability of discrete-time Markovian jump antilinear systems 2014,		1	

72	A Robust Framework for 2D Human Pose Tracking with Spatial and Temporal Constraints 2014,		1
71	Cooperative and Geometric Learning Algorithm (CGLA) for path planning of UAVs with limited information. <i>Automatica</i> , 2014 , 50, 809-820	5.7	50
70	LS-SVM approximate solution for affine nonlinear systems with partially unknown functions. <i>Journal of Industrial and Management Optimization</i> , 2014 , 10, 621-636	2	4
69	The Uncorrelated and Discriminant Colour Space for Facial Expression Recognition. <i>Springer Proceedings in Mathematics and Statistics</i> , 2014 , 167-177	0.2	
68	Cube Theory and Stable \$\$k\$\$ -Error Linear Complexity for Periodic Sequences. <i>Lecture Notes in Computer Science</i> , 2014 , 70-85	0.9	4
67	Using Kinect for face recognition under varying poses, expressions, illumination and disguise 2013,		120
66	A novel weighted fuzzy LDA for face recognition using the genetic algorithm. <i>Neural Computing and Applications</i> , 2013 , 22, 1531-1541	4.8	11
65	2013,		1
64	Face hallucination: How much it can improve face recognition 2013,		7
63	A Novel Human Detection Approach Based on Depth Map via Kinect 2013 ,		10
63	A Novel Human Detection Approach Based on Depth Map via Kinect 2013, Cooperative and Geometric Learning for path planning of UAVs 2013,		10
		3.8	
62	Cooperative and Geometric Learning for path planning of UAVs 2013, Efficient sub-window search with fixed shape sub-windows. <i>International Journal of Machine</i>	3.8	
62	Cooperative and Geometric Learning for path planning of UAVs 2013, Efficient sub-window search with fixed shape sub-windows. International Journal of Machine Learning and Cybernetics, 2013, 4, 41-49 On j-conjugate product of quaternion polynomial matrices. Applied Mathematics and Computation,		4
62 61 60	Cooperative and Geometric Learning for path planning of UAVs 2013, Efficient sub-window search with fixed shape sub-windows. International Journal of Machine Learning and Cybernetics, 2013, 4, 41-49 On j-conjugate product of quaternion polynomial matrices. Applied Mathematics and Computation, 2013, 219, 11223-11232		2
62 61 60	Cooperative and Geometric Learning for path planning of UAVs 2013, Efficient sub-window search with fixed shape sub-windows. International Journal of Machine Learning and Cybernetics, 2013, 4, 41-49 On j-conjugate product of quaternion polynomial matrices. Applied Mathematics and Computation, 2013, 219, 11223-11232 Controllability and stability of discrete-time antilinear systems 2013, Face recognition via local preserving average neighborhood margin maximization and extreme	2.7	2
62 61 60 59 58	Cooperative and Geometric Learning for path planning of UAVs 2013, Efficient sub-window search with fixed shape sub-windows. International Journal of Machine Learning and Cybernetics, 2013, 4, 41-49 On j-conjugate product of quaternion polynomial matrices. Applied Mathematics and Computation, 2013, 219, 11223-11232 Controllability and stability of discrete-time antilinear systems 2013, Face recognition via local preserving average neighborhood margin maximization and extreme learning machine. Soft Computing, 2012, 16, 1515-1523 An innovative face image enhancement based on principle component analysis. International	2.7	4 2 6 9

(2011-2012)

54	Proportional multiple-integral observer design for continuous-time descriptor linear systems. <i>Asian Journal of Control</i> , 2012 , 14, 476-488	1.7	7	
53	DBCAMM: A novel density based clustering algorithm via using the Mahalanobis metric. <i>Applied Soft Computing Journal</i> , 2012 , 12, 1542-1554	7.5	17	
52	Face Recognition Based on Rearranged Modular 2DPCA. Lecture Notes in Computer Science, 2012, 395-	403 9	1	
51	A fast \$ell_1\$-solver and its applications to robust face recognition. <i>Journal of Industrial and Management Optimization</i> , 2012 , 8, 163-178	2	10	
50	. IEEE Transactions on Signal Processing, 2011 , 59, 1895-1901	4.8	23	
49	Parametric solutions to Sylvester-conjugate matrix equations. <i>Computers and Mathematics With Applications</i> , 2011 , 62, 3317-3325	2.7	6	
48	An Innovative Weighted 2DLDA Approach for Face Recognition. <i>Journal of Signal Processing Systems</i> , 2011 , 65, 81-87	1.4	6	
47	Iterative solutions to the KalmanNakubovich-conjugate matrix equation. <i>Applied Mathematics and Computation</i> , 2011 , 217, 4427-4438	2.7	27	
46	Unified formulation of linear discriminant analysis methods and optimal parameter selection. <i>Pattern Recognition</i> , 2011 , 44, 307-319	7.7	5	
45	Impulsive Mode Elimination for Descriptor Systems by a Structured P-D Feedback. <i>IEEE Transactions on Automatic Control</i> , 2011 , 56, 2968-2973	5.9	14	
44	Efficient subwindow search with submodular score functions 2011,		2	
43	Margin Preserving Projection for Image Set Based Face Recognition. <i>Lecture Notes in Computer Science</i> , 2011 , 681-689	0.9	2	
42	On conjugate product of complex polynomials. <i>Applied Mathematics Letters</i> , 2011 , 24, 735-741	3.5	3	
41	APSCAN: A parameter free algorithm for clustering. Pattern Recognition Letters, 2011, 32, 973-986	4.7	47	
40	On the conjugate product of complex polynomial matrices. <i>Mathematical and Computer Modelling</i> , 2011 , 53, 2031-2043		9	
39	The complete solution to the Sylvester-polynomial-conjugate matrix equations. <i>Mathematical and Computer Modelling</i> , 2011 , 53, 2044-2056		15	
38	A new rearrange modular two-dimensional LDA for face recognition 2011,		1	
37	The MCF Model: Utilizing Multiple Colors for Face Recognition 2011,		2	

36	Stabilization of discrete-time Markovian jump systems with partially unknown transition probabilities. <i>Discrete and Continuous Dynamical Systems - Series B</i> , 2011 , 16, 1197-1211	1.3	5
35	Feature Extraction via Balanced Average Neighborhood Margin Maximization. <i>Lecture Notes in Computer Science</i> , 2011 , 109-116	0.9	
34	Fast Sub-window Search with Square Shape. Lecture Notes in Computer Science, 2011, 540-549	0.9	
33	Object Detection by Admissible Region Search. <i>Lecture Notes in Computer Science</i> , 2011 , 521-530	0.9	
32	Face Recognition via Two Dimensional Locality Preserving Projection in Frequency Domain. <i>Lecture Notes in Computer Science</i> , 2010 , 271-281	0.9	1
31	Face Hallucination under an Image Decomposition Perspective 2010,		3
30	A Novel Facial Expression Recognition Based on the Curvelet Features 2010 ,		3
29	Exploiting Monge structures in optimum subwindow search 2010 ,		4
28	A unified tensor framework for face recognition. Pattern Recognition, 2009, 42, 2850-2862	7.7	13
27	An Innovative Weighted 2DLDA Approach for Face Recognition. <i>Lecture Notes in Computer Science</i> , 2009 , 110-118	0.9	O
26	Face Image Enhancement via Principal Component Analysis. <i>Lecture Notes in Computer Science</i> , 2009 , 190-198	0.9	
25	A simplified GLRAM algorithm for face recognition. <i>Neurocomputing</i> , 2008 , 72, 212-217	5.4	8
24	Recognising faces in unseen modes: A tensor based approach 2008 ,		12
23	Stabilization of rectangular descriptor systems 2008,		5
22	Recognising online spatial activities using a bioinformatics inspired sequence alignment approach. <i>Pattern Recognition</i> , 2008 , 41, 3481-3492	7.7	9
21	An Alternative approach to Hitontrol for fuzzy systems. Asian Journal of Control, 2008 , 10, 405-419	1.7	2
20	The framework of axiomatics fuzzy sets based fuzzy classifiers. <i>Journal of Industrial and Management Optimization</i> , 2008 , 4, 581-609	2	9
19	Double Sides 2DPCA for Face Recognition. <i>Lecture Notes in Computer Science</i> , 2008 , 446-459	0.9	4

(1998-2008)

18	A New Face Recognition Approach to Boosting the Worst-Case Performance. <i>Lecture Notes in Computer Science</i> , 2008 , 927-930	0.9	4
17	Approaches to the representations and logic operations of fuzzy concepts in the framework of axiomatic fuzzy set theory I. <i>Information Sciences</i> , 2007 , 177, 1007-1026	7.7	45
16	Approaches to the representations and logic operations of fuzzy concepts in the framework of axiomatic fuzzy set theory II. <i>Information Sciences</i> , 2007 , 177, 1027-1045	7.7	21
15	Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression. <i>Pattern Recognition</i> , 2007 , 40, 2154-2162	7.7	194
14	Face Recognition Using Kernel Ridge Regression 2007,		105
13	A Smith-Waterman Local Alignment Approach for Spatial Activity Recognition 2006,		2
12	A Biometric Approach to Linux Login Access Control 2006 ,		2
11	A Fast Feature-based Dimension Reduction Algorithm for Kernel Classifiers. <i>Neural Processing Letters</i> , 2006 , 24, 137-151	2.4	2
10	Revisit to the Problem of Generalized Low Rank Approximation of Matrices 2006 , 450-460		6
9	Revisit to the Problem of Generalized Low Rank Approximation of Matrices 2006 , 450-460		
8	Model reduction for singular systems via covariance approximation. <i>Optimal Control Applications and Methods</i> , 2004 , 25, 263-278	1.7	8
7	Robust D-stability with mixed-type uncertainties. <i>IEEE Transactions on Automatic Control</i> , 2004 , 49, 1878	351&82	10
6	Suboptimal model reduction for singular systems. <i>International Journal of Control</i> , 2004 , 77, 992-1000	1.5	7
5	A recursive soft-decision approach to blind image deconvolution. <i>IEEE Transactions on Signal Processing</i> , 2003 , 51, 515-526	4.8	18
4	A new state space control scheme for Host-Gate Way Rate Control Protocol within intranets using ATM ABR service. <i>Computer Communications</i> , 2002 , 25, 1799-1810	5.1	
3	Global convergence analysis for the NIC flow. <i>IEEE Transactions on Signal Processing</i> , 2001 , 49, 2422-243	0 4.8	2
2	Characterization and selection of global optimal output feedback gains for linear time-invariant systems. <i>Optimal Control Applications and Methods</i> , 2000 , 21, 195-209	1.7	4
1	Generalized Karhunen-Loeve transform. <i>IEEE Signal Processing Letters</i> , 1998 , 5, 141-142	3.2	57