
Matthew D Lebar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9531794/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of sexual structures influences metabolomic and transcriptomic profiles in Aspergillus flavus. Fungal Biology, 2022, 126, 187-200.	2.5	4
2	Dataset for transcriptomic profiles associated with development of sexual structures in Aspergillus flavus. Data in Brief, 2022, 42, 108033.	1.0	1
3	Cumulative Effects of Non-Aflatoxigenic Aspergillus flavus Volatile Organic Compounds to Abate Toxin Production by Mycotoxigenic Aspergilli. Toxins, 2022, 14, 340.	3.4	6
4	The potential role of fungal volatile organic compounds in Aspergillus flavus biocontrol efficacy. Biological Control, 2021, 160, 104686.	3.0	24
5	Genetic Responses and Aflatoxin Inhibition during Co-Culture of Aflatoxigenic and Non-Aflatoxigenic Aspergillus flavus. Toxins, 2021, 13, 794.	3.4	9
6	Flavonoids Modulate the Accumulation of Toxins From Aspergillus flavus in Maize Kernels. Frontiers in Plant Science, 2021, 12, 761446.	3.6	5
7	Chemical repertoire and biosynthetic machinery of the <i>Aspergillus flavus</i> secondary metabolome: A review. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 2797-2842.	11.7	22
8	Characterization of morphological changes within stromata during sexual reproduction in <i>Aspergillus flavus</i> . Mycologia, 2020, 112, 908-920.	1.9	7
9	Biosynthesis of conidial and sclerotial pigments in Aspergillus species. Applied Microbiology and Biotechnology, 2020, 104, 2277-2286.	3.6	47
10	Contribution of Maize Polyamine and Amino Acid Metabolism Toward Resistance Against Aspergillus flavus Infection and Aflatoxin Production. Frontiers in Plant Science, 2019, 10, 692.	3.6	28
11	Identification of a copper-transporting ATPase involved in biosynthesis of A. flavus conidial pigment. Applied Microbiology and Biotechnology, 2019, 103, 4889-4897.	3.6	17
12	rmtA-Dependent Transcriptome and Its Role in Secondary Metabolism, Environmental Stress, and Virulence in Aspergillus flavus. G3: Genes, Genomes, Genetics, 2019, 9, 4087-4096.	1.8	5
13	Identification and functional analysis of the aspergillic acid gene cluster in Aspergillus flavus. Fungal Genetics and Biology, 2018, 116, 14-23.	2.1	30
14	<i>Aspergillus flavus</i> Secondary Metabolites: More than Just Aflatoxins. Food Safety (Tokyo, Japan), 2018, 6, 7-32.	1.8	33
15	RNA interference-based silencing of the alpha-amylase (amy1) gene in Aspergillus flavus decreases fungal growth and aflatoxin production in maize kernels. Planta, 2018, 247, 1465-1473.	3.2	34
16	Whole genome comparison of Aspergillus flavus L-morphotype strain NRRL 3357 (type) and S-morphotype strain AF70. PLoS ONE, 2018, 13, e0199169.	2.5	27
17	The Aspergillus flavus Spermidine Synthase (spds) Gene, Is Required for Normal Development, Aflatoxin Production, and Pathogenesis During Infection of Maize Kernels. Frontiers in Plant Science, 2018, 9, 317.	3.6	32
18	Carbon Dioxide Mediates the Response to Temperature and Water Activity Levels in Aspergillus flavus during Infection of Maize Kernels, Toxins, 2018, 10, 5,	3.4	31

MATTHEW D LEBAR

#	Article	IF	CITATIONS
19	A Fluorescent Probe Distinguishes between Inhibition of Early and Late Steps of Lipopolysaccharide Biogenesis in Whole Cells. ACS Chemical Biology, 2017, 12, 928-932.	3.4	22
20	The Pathogenesis-Related Maize Seed (PRms) Gene Plays a Role in Resistance to Aspergillus flavus Infection and Aflatoxin Contamination. Frontiers in Plant Science, 2017, 8, 1758.	3.6	20
21	The Aspergillus flavus Homeobox Gene, hbx1, Is Required for Development and Aflatoxin Production. Toxins, 2017, 9, 315.	3.4	38
22	Miniaturized Cultivation of Microbiota for Antimalarial Drug Discovery. Medicinal Research Reviews, 2016, 36, 144-168.	10.5	6
23	Detection of Lipidâ€Linked Peptidoglycan Precursors by Exploiting an Unexpected Transpeptidase Reaction. FASEB Journal, 2015, 29, 573.11.	0.5	0
24	Detection of Lipid-Linked Peptidoglycan Precursors by Exploiting an Unexpected Transpeptidase Reaction. Journal of the American Chemical Society, 2014, 136, 14678-14681.	13.7	100
25	Lipoprotein Activators Stimulate <i>Escherichia coli</i> Penicillin-Binding Proteins by Different Mechanisms. Journal of the American Chemical Society, 2014, 136, 52-55.	13.7	72
26	Reconstitution of Peptidoglycan Cross-Linking Leads to Improved Fluorescent Probes of Cell Wall Synthesis. Journal of the American Chemical Society, 2014, 136, 10874-10877.	13.7	99
27	MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis. Science, 2014, 345, 220-222.	12.6	278
28	A mutant Escherichia coli that attaches peptidoglycan to lipopolysaccharide and displays cell wall on its surface. ELife, 2014, 3, e05334.	6.0	23
29	D-Amino Acids Indirectly Inhibit Biofilm Formation in Bacillus subtilis by Interfering with Protein Synthesis. Journal of Bacteriology, 2013, 195, 5391-5395.	2.2	178
30	Forming Cross-Linked Peptidoglycan from Synthetic Gram-Negative Lipid II. Journal of the American Chemical Society, 2013, 135, 4632-4635.	13.7	48
31	Screening Mangrove Endophytic Fungi for Antimalarial Natural Products. Marine Drugs, 2013, 11, 5036-5050.	4.6	58
32	The Diarylheptanoid (+)-a <i>R</i> ,11 <i>S-</i> Myricanol and Two Flavones from Bayberry (<i>Myrica) Tj ETQqO O (</i>	0 rgBT /O\ 3.0	verlock 10 Tf 60
33	CNS and antimalarial activity of synthetic meridianin and psammopemmin analogs. Bioorganic and Medicinal Chemistry, 2011, 19, 5756-5762.	3.0	31
34	Accumulation of vanadium, manganese, and nickel in Antarctic tunicates. Polar Biology, 2011, 34, 587-590.	1.2	8
35	Synthesis of the C3–14 fragment of palmerolide A using a chiral pool based strategy. Tetrahedron, 2010, 66, 1557-1562.	1.9	19
36	Synthesis and Structure Reassessment of Psammopemmin A. Australian Journal of Chemistry, 2010, 63, 862.	0.9	47

#	Article	IF	CITATIONS
37	Cold-water marine natural products. Natural Product Reports, 2007, 24, 774.	10.3	145
38	On the stereochemistry of palmerolide A. Tetrahedron Letters, 2007, 48, 8009-8010.	1.4	34
39	Laboratory Studies on the Formation of Three C2H4O Isomers—Acetaldehyde (CH3CHO), Ethylene Oxide (c 2H4O), and Vinyl Alcohol (CH2CHOH)—in Interstellar and Cometary Ices. Astrophysical Journal, 2005, 634, 698-711.	4.5	86