Po-Wen Chiu

List of Publications by Citations

Source: https://exaly.com/author-pdf/9531236/po-wen-chiu-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

97
papers

5,500
citations

105
ext. papers

6,225
ext. citations

37
h-index
g-index

5.58
L-index

#	Paper	IF	Citations
97	Graphene annealing: how clean can it be?. <i>Nano Letters</i> , 2012 , 12, 414-9	11.5	675
96	Controllable graphene N-doping with ammonia plasma. <i>Applied Physics Letters</i> , 2010 , 96, 133110	3.4	413
95	Single-Layer ReSITwo-Dimensional Semiconductor with Tunable In-Plane Anisotropy. <i>ACS Nano</i> , 2015 , 9, 11249-57	16.7	286
94	Clean transfer of graphene for isolation and suspension. ACS Nano, 2011, 5, 2362-8	16.7	241
93	V2O5 nanofibre sheet actuators. <i>Nature Materials</i> , 2003 , 2, 316-9	27	230
92	Interconnection of carbon nanotubes by chemical functionalization. <i>Applied Physics Letters</i> , 2002 , 80, 3811-3813	3.4	172
91	Structural and Chemical Dynamics of Pyridinic-Nitrogen Defects in Graphene. <i>Nano Letters</i> , 2015 , 15, 7408-13	11.5	157
90	Three-fold rotational defects in two-dimensional transition metal dichalcogenides. <i>Nature Communications</i> , 2015 , 6, 6736	17.4	149
89	High mobility flexible graphene field-effect transistors with self-healing gate dielectrics. <i>ACS Nano</i> , 2012 , 6, 4469-74	16.7	146
88	Metal-Free Growth of Nanographene on Silicon Oxides for Transparent Conducting Applications. <i>Advanced Functional Materials</i> , 2012 , 22, 2123-2128	15.6	142
87	Twisting bilayer graphene superlattices. <i>ACS Nano</i> , 2013 , 7, 2587-94	16.7	139
86	Growth and electrical transport of germanium nanowires. <i>Journal of Applied Physics</i> , 2001 , 90, 5747-575	1 2.5	135
85	High-Mobility InSe Transistors: The Role of Surface Oxides. <i>ACS Nano</i> , 2017 , 11, 7362-7370	16.7	132
84	Flexible ferroelectric element based on van der Waals heteroepitaxy. Science Advances, 2017, 3, e17001	21 4.3	130
83	Remote catalyzation for direct formation of graphene layers on oxides. <i>Nano Letters</i> , 2012 , 12, 1379-84	11.5	130
82	Magnetotransport at domain walls in BiFeO3. <i>Physical Review Letters</i> , 2012 , 108, 067203	7.4	120
81	Chemical functionalization of single walled carbon nanotubes. Current Applied Physics, 2002, 2, 497-501	2.6	102

(2015-2011)

80	Tuning of Charge Densities in Graphene by Molecule Doping. <i>Advanced Functional Materials</i> , 2011 , 21, 2687-2692	15.6	91
79	van der Waal Epitaxy of Flexible and Transparent VO2 Film on Muscovite. <i>Chemistry of Materials</i> , 2016 , 28, 3914-3919	9.6	84
78	Heteroepitaxy of FeO/Muscovite: A New Perspective for Flexible Spintronics. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 33794-33801	9.5	83
77	Ferroelectric control of the conduction at the LaAlO/SrTiOIheterointerface. <i>Advanced Materials</i> , 2013 , 25, 3357-64	24	78
76	Gigahertz flexible graphene transistors for microwave integrated circuits. ACS Nano, 2014, 8, 7663-70	16.7	76
75	Van der Waals epitaxy of functional MoO2 film on mica for flexible electronics. <i>Applied Physics Letters</i> , 2016 , 108, 253104	3.4	68
74	Nonlinear Behavior in the Thermopower of Doped Carbon Nanotubes Due to Strong, Localized States. <i>Nano Letters</i> , 2003 , 3, 839-842	11.5	66
73	Exploring the Single Atom Spin State by Electron Spectroscopy. <i>Physical Review Letters</i> , 2015 , 115, 206	8 9 34	63
72	Intralayer and interlayer electron-phonon interactions in twisted graphene heterostructures. <i>Nature Communications</i> , 2018 , 9, 1221	17.4	63
71	Oxide Heteroepitaxy for Flexible Optoelectronics. ACS Applied Materials & amp; Interfaces, 2016, 8, 324	01 5.3 324	082
70	Temperature-induced change from p to n conduction in metallofullerene nanotube peapods. <i>Applied Physics Letters</i> , 2001 , 79, 3845-3847	3.4	61
69	Fully Transparent Resistive Memory Employing Graphene Electrodes for Eliminating Undesired Surface Effects. <i>Proceedings of the IEEE</i> , 2013 , 101, 1732-1739	14.3	56
68	A novel artificial synapse with dual modes using bilayer graphene as the bottom electrode. <i>Nanoscale</i> , 2017 , 9, 9275-9283	7.7	55
67	Stable 1T Tungsten Disulfide Monolayer and Its Junctions: Growth and Atomic Structures. <i>ACS Nano</i> , 2018 , 12, 12080-12088	16.7	51
66	Robust room temperature valley polarization in monolayer and bilayer WS2. Nanoscale, 2016 , 8, 6035-4	27.7	50
65	In situ observation of step-edge in-plane growth of graphene in a STEM. <i>Nature Communications</i> , 2014 , 5, 4055	17.4	45
64	Photogating WS Photodetectors Using Embedded WSe Charge Puddles. ACS Nano, 2020, 14, 4559-456	5 16.7	40
63	In Situ Tuning of Switching Window in a Gate-Controlled Bilayer Graphene-Electrode Resistive Memory Device. <i>Advanced Materials</i> , 2015 , 27, 7767-74	24	40

62	Growth and Raman spectra of single-crystal trilayer graphene with different stacking orientations. <i>ACS Nano</i> , 2014 , 8, 10766-73	16.7	39
61	Direct growth of self-crystallized graphene and graphite nanoballs with Ni vapor-assisted growth: from controllable growth to material characterization. <i>Scientific Reports</i> , 2014 , 4, 4739	4.9	37
60	Fast growth of large-grain and continuous MoS films through a self-capping vapor-liquid-solid method. <i>Nature Communications</i> , 2020 , 11, 3682	17.4	36
59	High-Performance Organic Light-Emitting Diode with Substitutionally Boron-Doped Graphene Anode. ACS Applied Materials & amp; Interfaces, 2017, 9, 14998-15004	9.5	35
58	Surface Oxidation Doping to Enhance Photogenerated Carrier Separation Efficiency for Ultrahigh Gain Indium Selenide Photodetector. <i>ACS Photonics</i> , 2017 , 4, 2930-2936	6.3	34
57	Scalable graphite/copper bishell composite for high-performance interconnects. ACS Nano, 2014, 8, 275	5 -82 7	33
56	End-Bonded Metal Contacts on WSe Field-Effect Transistors. ACS Nano, 2019, 13, 8146-8154	16.7	30
55	Ultrafast and low temperature synthesis of highly crystalline and patternable few-layers tungsten diselenide by laser irradiation assisted selenization process. <i>ACS Nano</i> , 2015 , 9, 4346-53	16.7	30
54	Band-structure modulation in carbon nanotube T junctions. <i>Physical Review Letters</i> , 2004 , 92, 246802	7.4	30
53	Layer-dependent optical conductivity in atomic thin WSIby reflection contrast spectroscopy. <i>ACS Applied Materials & Applied & Applied Materials & Applied &</i>	9.5	28
52	Unexpected Huge Dimerization Ratio in One-Dimensional Carbon Atomic Chains. <i>Nano Letters</i> , 2017 , 17, 494-500	11.5	27
51	Transition from direct tunneling to field emission in carbon nanotube intramolecular junctions. <i>Applied Physics Letters</i> , 2008 , 92, 042107	3.4	27
50	Ultrafast Monolayer In/Gr-WS-Gr Hybrid Photodetectors with High Gain. ACS Nano, 2019 , 13, 3269-3279	16.7	26
49	All-carbon field emission device by direct synthesis of graphene and carbon nanotube. <i>Diamond and Related Materials</i> , 2013 , 31, 42-46	3.5	24
48	Scalable van der Waals Heterojunctions for High-Performance Photodetectors. <i>ACS Applied Materials & ACS Applied & ACS Applied Materials & ACS Applied & ACS ACS Applied & ACS ACS APPLIED & ACS ACS APPLIED & ACS ACS ACS APPLIED & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	23
47	Origin of van Hove singularities in twisted bilayer graphene. <i>Carbon</i> , 2015 , 90, 138-145	10.4	23
46	Attenuation of electromagnetic waves by carbon nanotube composites. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2008 , 40, 2425-2429	3	23
45	Design of Core-Shell Quantum Dots-3D WS Nanowall Hybrid Nanostructures with High-Performance Bifunctional Sensing Applications. <i>ACS Nano</i> , 2020 , 14, 12668-12678	16.7	23

(2017-2003)

44	Temperature dependence of conductance character in nanotube peapods. <i>Applied Physics A: Materials Science and Processing</i> , 2003 , 76, 463-467	2.6	21
43	Graphene-Transition Metal Dichalcogenide Heterojunctions for Scalable and Low-Power Complementary Integrated Circuits. <i>ACS Nano</i> , 2020 , 14, 985-992	16.7	20
42	Postsynthesis of h-BN/Graphene Heterostructures Inside a STEM. Small, 2016, 12, 252-9	11	20
41	Transparent Antiradiative Ferroelectric Heterostructure Based on Flexible Oxide Heteroepitaxy. <i>ACS Applied Materials & Districted Materi</i>	9.5	19
40	High-performance and high-sensitivity applications of graphene transistors with self-assembled monolayers. <i>Biosensors and Bioelectronics</i> , 2016 , 77, 1008-15	11.8	17
39	Gating electron-hole asymmetry in twisted bilayer graphene. ACS Nano, 2014, 8, 6962-9	16.7	17
38	Characterization of graphene grown on bulk and thin film nickel. <i>Langmuir</i> , 2011 , 27, 13748-53	4	17
37	Gigahertz Field-Effect Transistors with CMOS-Compatible Transfer-Free Graphene. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 6336-6343	9.5	16
36	Conduction control at ferroic domain walls via external stimuli. Nanoscale, 2014, 6, 10524-9	7.7	16
35	Cathodic plasmalhduced syntheses of graphene nanosheet/MnO2/WO3 architectures and their use in supercapacitors. <i>Electrochimica Acta</i> , 2020 , 342, 136043	6.7	15
34	High-Mobility InSe Transistors: The Nature of Charge Transport. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 35969-35976	9.5	13
33	Twisted bilayer graphene photoluminescence emission peaks at van Hove singularities. <i>Journal of Physics Condensed Matter</i> , 2018 , 30, 175302	1.8	13
32	Substitutional boron-doping of carbon nanotubes. Current Applied Physics, 2002, 2, 473-477	2.6	13
31	A Graphene-Based Filament Transistor with Sub-10 mVdecll Subthreshold Swing. <i>Advanced Electronic Materials</i> , 2018 , 4, 1700608	6.4	12
30	Carbon nanotube nanocontact in T-junction structures. <i>Applied Physics Letters</i> , 2007 , 91, 102109	3.4	11
29	Inverse paired-pulse facilitation in neuroplasticity based on interface-boosted charge trapping layered electronics. <i>Nano Energy</i> , 2020 , 77, 105258	17.1	9
28	Hybrid ZnO NR/graphene structures as advanced optoelectronic devices with high transmittance. <i>Nanoscale Research Letters</i> , 2013 , 8, 350	5	8
27	Raman Excitation Profile of the G-band Enhancement in Twisted Bilayer Graphene. <i>Brazilian Journal of Physics</i> , 2017 , 47, 589-593	1.2	8

26	High-performance carbon nanotube network transistors for logic applications. <i>Applied Physics Letters</i> , 2008 , 92, 063511	3.4	8
25	Probing interlayer coupling in twisted single-crystal bilayer graphene by Raman spectroscopy. Journal of Raman Spectroscopy, 2014 , 45, 912-917	2.3	7
24	Scalable T-Gate Aligned GrWS2lir Radio-Frequency Field-Effect Transistors. <i>ACS Applied Electronic Materials</i> , 2020 , 2, 3898-3905	4	6
23	Scanning Moir Fringe Method: A Superior Approach to Perceive Defects, Interfaces, and Distortion in 2D Materials. <i>ACS Nano</i> , 2020 , 14, 6034-6042	16.7	6
22	Characterization of Graphene and Transition Metal Dichalcogenide at the Atomic Scale. <i>Journal of the Physical Society of Japan</i> , 2015 , 84, 121005	1.5	5
21	Modifying optical properties of GaN nanowires by Ga2O3 overgrowth. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2012 , 30, 011802	1.3	5
20	Fabrication and characteristics of ultrashort-channel carbon nanotube field-effect transistors. <i>Applied Physics Letters</i> , 2008 , 92, 152111	3.4	4
19	Photoactive Electro-Controlled Visual Perception Memory for Emulating Synaptic Metaplasticity and Hebbian Learning. <i>Advanced Functional Materials</i> , 2021 , 31, 2105345	15.6	4
18	Tailoring point electron sources of individual carbon nanotubes. <i>Applied Physics Letters</i> , 2010 , 97, 0731	19.4	3
17	Mimic Drug Dosage Modulation for Neuroplasticity Based on Charge-Trap Layered Electronics. <i>Advanced Functional Materials</i> , 2021 , 31, 2005182	15.6	3
16	Formation of Highly Doped Nanostripes in 2D Transition Metal Dichalcogenides via a Dislocation Climb Mechanism. <i>Advanced Materials</i> , 2021 , 33, e2007819	24	3
15	Effect of adsorbents on electronic transport in graphene 2014 , 265-291		2
14	Oxidation and Degradation of WS Monolayers Grown by NaCl-Assisted Chemical Vapor Deposition: Mechanism and Prevention. <i>Nanoscale</i> , 2021 , 13, 16629-16640	7.7	2
13	Two-dimensional iodine-monofluoride epitaxy on WSe2. Npj 2D Materials and Applications, 2021, 5,	8.8	2
12	Rational Design on Wrinkle-Less Transfer of Transition Metal Dichalcogenide Monolayer by Adjustable Wettability-Assisted Transfer Method. <i>Advanced Functional Materials</i> ,2104978	15.6	2
11	On-Wafer FinFET-Based EUV/eBeam Detector Arrays for Advanced Lithography Processes. <i>IEEE Transactions on Electron Devices</i> , 2020 , 67, 2406-2413	2.9	1
10	A Graphene/Polycrystalline Silicon Photodiode and Its Integration in a Photodiode-Oxide-Semiconductor Field Effect Transistor. <i>Micromachines</i> , 2020 , 11,	3.3	1
9	Memory Devices: In Situ Tuning of Switching Window in a Gate-Controlled Bilayer Graphene-Electrode Resistive Memory Device (Adv. Mater. 47/2015). <i>Advanced Materials</i> , 2015 , 27, 776	56 24 766	5 ¹

LIST OF PUBLICATIONS

8	Enhanced hot luminescence at van Hove singularities in twisted bilayer graphene 2017,		1
7	Carbon nanotube T junctions: formation and properties. <i>Journal of Nanoscience and Nanotechnology</i> , 2008 , 8, 88-98	1.3	1
6	Nearly Epitaxial Low-Resistive Co Germanide Formed by Atomic Layer Deposited Cobalt and Laser Thermal Annealing. <i>IEEE Electron Device Letters</i> , 2020 , 41, 272-275	4.4	1
5	Resonance Raman enhancement by the intralayer and interlayer electron-phonon processes in twisted bilayer graphene. <i>Scientific Reports</i> , 2021 , 11, 17206	4.9	1
4	Embedment of Multiple Transition Metal Impurities into WS Monolayer for Bandstructure Modulation. <i>Small</i> , 2021 , 17, e2007171	11	0
3	Artificial mechanoreceptor based on van der Waals stacking structure. <i>Matter</i> , 2021 , 4, 1598-1610	12.7	O
2	Defect Engineering for Graphene Tunable Doping. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1283, 1		
1	Co Silicide With Low Contact Resistivity Formed by Atomic Layer Deposited Cobalt and Subsequent Annealing. <i>IEEE Electron Device Letters</i> , 2020 , 41, 139-142	4.4	