

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9531074/publications.pdf Version: 2024-02-01

YING LL

#	Article	IF	CITATIONS
1	Lineage tracing reveals the origin of Nestin-positive cells are heterogeneous and rarely from ependymal cells after spinal cord injury. Science China Life Sciences, 2022, 65, 757-769.	2.3	16
2	Nanoscale Modification of Titanium Implants Improves Behaviors of Bone Mesenchymal Stem Cells and Osteogenesis In Vivo. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-13.	1.9	2
3	MicroRNA-183 accelerates the proliferation of hepatocyte during liver regeneration through targeting programmed cell death protein 6. Genes and Genomics, 2022, , 1.	0.5	0
4	Development and validation of a prediction model of perioperative hypoglycemia risk in patients with type 2 diabetes undergoing elective surgery. BMC Surgery, 2022, 22, 167.	0.6	6
5	Sustained release of collagenâ€affinity SDFâ€1α from bookâ€shaped acellular fibrocartilage scaffold enhanced boneâ€ŧendon healing in a rabbit model. Journal of Orthopaedic Research, 2021, 39, 1331-1343.	1.2	7
6	Dexamethasoneâ€loaded βâ€cyclodextrin for osteogenic induction of mesenchymal stem/progenitor cells and bone regeneration. Journal of Biomedical Materials Research - Part A, 2021, 109, 1125-1135.	2.1	10
7	Binary scaffold facilitates <i>in situ</i> regeneration of axons and neurons for complete spinal cord injury repair. Biomaterials Science, 2021, 9, 2955-2971.	2.6	12
8	Scar tissue removal-activated endogenous neural stem cells aid Taxol-modified collagen scaffolds in repairing chronic long-distance transected spinal cord injury. Biomaterials Science, 2021, 9, 4778-4792.	2.6	12
9	Dualâ€Cues Laden Scaffold Facilitates Neurovascular Regeneration and Motor Functional Recovery After Complete Spinal Cord Injury. Advanced Healthcare Materials, 2021, 10, e2100089.	3.9	17
10	Epidermal growth factor receptor-extracellular-regulated kinase blockade upregulates TRIM32 signaling cascade and promotes neurogenesis after spinal cord injury. Stem Cells, 2020, 38, 118-133.	1.4	19
11	Structure and ingredient-based biomimetic scaffolds combining with autologous bone marrow-derived mesenchymal stem cell sheets for bone-tendon healing. Biomaterials, 2020, 241, 119837.	5.7	48
12	Functional decellularized fibrocartilaginous matrix graft for rotator cuff enthesis regeneration: A novel technique to avoid in-vitro loading of cells. Biomaterials, 2020, 250, 119996.	5.7	39
13	Different functional bio-scaffolds share similar neurological mechanism to promote locomotor recovery of canines with complete spinal cord injury. Biomaterials, 2019, 214, 119230.	5.7	32
14	Transplantation of adult spinal cord grafts into spinal cord transected rats improves their locomotor function. Science China Life Sciences, 2019, 62, 725-733.	2.3	16
15	Pre-Clinical Evaluation of CBD-NT3 Modified Collagen Scaffolds in Completely Spinal Cord Transected Non-Human Primates. Journal of Neurotrauma, 2019, 36, 2316-2324.	1.7	17
16	Vascular endothelial growth factor activates neural stem cells through epidermal growth factor receptor signal after spinal cord injury. CNS Neuroscience and Therapeutics, 2019, 25, 375-385.	1.9	22
17	Scaffold-facilitated locomotor improvement post complete spinal cord injury: Motor axon regeneration versus endogenous neuronal relay formation. Biomaterials, 2019, 197, 20-31.	5.7	82
18	Taxol-modified collagen scaffold implantation promotes functional recovery after long-distance spinal cord complete transection in canines. Biomaterials Science, 2018, 6, 1099-1108.	2.6	50

Xing Li

#	Article	IF	CITATIONS
19	Functional collagen conduits combined with human mesenchymal stem cells promote regeneration after sciatic nerve transection in dogs. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1285-1296.	1.3	38
20	Bridging the gap with functional collagen scaffolds: tuning endogenous neural stem cells for severe spinal cord injury repair. Biomaterials Science, 2018, 6, 265-271.	2.6	56
21	Collagen scaffold combined with human umbilical cordâ€derived mesenchymal stem cells promote functional recovery after scar resection in rats with chronic spinal cord injury. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1154-e1163.	1.3	50
22	Human placenta-derived mesenchymal stem cells loaded on linear ordered collagen scaffold improves functional recovery after completely transected spinal cord injury in canine. Science China Life Sciences, 2018, 61, 2-13.	2.3	64
23	Complete canine spinal cord transection model: a large animal model for the translational research of spinal cord regeneration. Science China Life Sciences, 2018, 61, 115-117.	2.3	20
24	Efect of longitudinally oriented collagen conduit combined with nerve growth factor on nerve regeneration after dog sciatic nerve injury. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 2131-2139.	1.6	51
25	Comparison of subacute and chronic scar tissues after complete spinal cord transection. Experimental Neurology, 2018, 306, 132-137.	2.0	26
26	Cetuximab and Taxol co-modified collagen scaffolds show combination effects for the repair of acute spinal cord injury. Biomaterials Science, 2018, 6, 1723-1734.	2.6	55
27	Significant Improvement of Acute Complete Spinal Cord Injury Patients Diagnosed by a Combined Criteria Implanted with NeuroRegen Scaffolds and Mesenchymal Stem Cells. Cell Transplantation, 2018, 27, 907-915.	1.2	118
28	Functional Multichannel Poly(Propylene Fumarate)â€Collagen Scaffold with Collagenâ€Binding Neurotrophic Factor 3 Promotes Neural Regeneration After Transected Spinal Cord Injury. Advanced Healthcare Materials, 2018, 7, e1800315.	3.9	71
29	A modified collagen scaffold facilitates endogenous neurogenesis for acute spinal cord injury repair. Acta Biomaterialia, 2017, 51, 304-316.	4.1	117
30	Transplantation of hUC-MSCs seeded collagen scaffolds reduces scar formation and promotes functional recovery in canines with chronic spinal cord injury. Scientific Reports, 2017, 7, 43559.	1.6	61
31	Overexpression of a typeâ€l isopentenyl pyrophosphate isomerase of <i>Artemisia annua</i> in the cytosol leads to high arteannuinÂB production and artemisinin increase. Plant Journal, 2017, 91, 466-479.	2.8	23
32	Cetuximab modified collagen scaffold directs neurogenesis of injury-activated endogenous neural stem cells for acute spinal cord injury repair. Biomaterials, 2017, 137, 73-86.	5.7	106
33	Training Neural Stem Cells on Functional Collagen Scaffolds for Severe Spinal Cord Injury Repair. Advanced Functional Materials, 2016, 26, 5835-5847.	7.8	58
34	Bone marrowâ€derived mesenchymal stem cells in threeâ€dimensional culture promote neuronal regeneration by neurotrophic protection and immunomodulation. Journal of Biomedical Materials Research - Part A, 2016, 104, 1759-1769.	2.1	30
35	One-year clinical study of NeuroRegen scaffold implantation following scar resection in complete chronic spinal cord injury patients. Science China Life Sciences, 2016, 59, 647-655.	2.3	90
36	Outerâ€sphere residues influence the catalytic activity of a chalcone synthase from Polygonum cuspidatum. FEBS Open Bio, 2016, 6, 610-618.	1.0	4

Xing Li

#	Article	IF	CITATIONS
37	Functionalized collagen scaffold implantation and cAMP administration collectively facilitate spinal cord regeneration. Acta Biomaterialia, 2016, 30, 233-245.	4.1	61
38	Functionalized Collagen Scaffold Neutralizing the Myelin-Inhibitory Molecules Promoted Neurites Outgrowth in Vitro and Facilitated Spinal Cord Regeneration in Vivo. ACS Applied Materials & Interfaces, 2015, 7, 13960-13971.	4.0	76
39	The linear-ordered collagen scaffold-BDNF complex significantly promotes functional recovery after completely transected spinal cord injury in canine. Biomaterials, 2015, 41, 89-96.	5.7	123
40	Promotion of neuronal differentiation of neural progenitor cells by using EGFR antibody functionalized collagen scaffolds for spinal cord injury repair. Biomaterials, 2013, 34, 5107-5116.	5.7	104