Deepthi P R

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9530830/publications.pdf

Version: 2024-02-01

1684188 1720034 9 160 5 7 citations h-index g-index papers 9 9 9 147 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Synthesis, phase transformation, and morphology of hausmannite Mn3O4 nanoparticles: photocatalytic and antibacterial investigations. Heliyon, 2020, 6, e03245.	3.2	65
2	Optical, dielectric & amp; ferroelectric studies on amino acids doped TGS single crystals. RSC Advances, 2016, 6, 33686-33694.	3.6	47
3	Inclusion of an anionic dye in the molecular structure of potassium dihydrogen phosphate crystal for SSDL applications. Indian Journal of Physics, 2019, 93, 991-1000.	1.8	18
4	Growth and impedance analysis of pure TGAc and dye doped TGAc crystals-enhanced dielectric permittivity for energy-storage devices. SN Applied Sciences, 2020, 2, 1.	2.9	16
5	Reduced A–B super exchange interaction in Sm3+–Gd3+-doped Mn–Zn ferrites due to high energy gamma irradiation. Indian Journal of Physics, 2019, 93, 169-174.	1.8	8
6	Optical and Thermal Properties of Acid Red Doped Triglycine Acetate Crystal for Optoelectronic Applications. Crystal Research and Technology, 2022, 57, 2100130.	1.3	2
7	Methyl Orange Doped Sulphamic Acid Single Crystals: Growth, Optical and Thermal Properties for Optoelectronic Applications. Brazilian Journal of Physics, 2022, 52, 1.	1.4	2
8	Crystal violet doped triglycine acetate crystal: a potential material for optoelectronic applications. Indian Journal of Physics, 0 , 1 .	1.8	1
9	Dye doped sulphamic acid crystals: a potential material for optoelectronic applications. Journal of Materials Science: Materials in Electronics, 0 , 1 .	2.2	1