
Zheng-Zhe Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9530699/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Linking Genome-Centric Metagenomics to Kinetic Analysis Reveals the Regulation Mechanism of Hydroxylamine in Nitrite Accumulation of Biological Denitrification. Environmental Science & Technology, 2022, 56, 10317-10328.	10.0	10
2	Linear anionic surfactant (SDBS) destabilized anammox process through sludge disaggregation and metabolic inhibition. Journal of Hazardous Materials, 2021, 403, 123641.	12.4	11
3	Biochar Mitigates N ₂ O Emission of Microbial Denitrification through Modulating Carbon Metabolism and Allocation of Reducing Power. Environmental Science & Technology, 2021, 55, 8068-8078.	10.0	58
4	Occurrence, effects, and biodegradation of plastic additives in sludge anaerobic digestion: A review. Environmental Pollution, 2021, 287, 117568.	7.5	28
5	Recent advances in partial denitrification in biological nitrogen removal: From enrichment to application. Bioresource Technology, 2020, 298, 122444.	9.6	125
6	Anammox Granules Acclimatized to Mainstream Conditions Can Achieve a Volumetric Nitrogen Removal Rate Comparable to Sidestream Systems. Environmental Science & Technology, 2020, 54, 12959-12966.	10.0	39
7	New applications of quinone redox mediators: Modifying nature-derived materials for anaerobic biotransformation process. Science of the Total Environment, 2020, 744, 140652.	8.0	19
8	Comparative Metagenomic and Metatranscriptomic Analyses Reveal the Functional Species and Metabolic Characteristics of an Enriched Denitratation Community. Environmental Science & Technology, 2020, 54, 14312-14321.	10.0	46
9	Long-term effects of copper nanoparticles on granule-based denitrification systems: Performance, microbial communities, functional genes and sludge properties. Bioresource Technology, 2019, 289, 121707.	9.6	27
10	Effects of ZnO nanoparticles on high-rate denitrifying granular sludge and the role of phosphate in toxicity attenuation. Environmental Pollution, 2019, 251, 166-174.	7.5	20
11	Evaluating the effects of Zn(II) on high-rate biogranule-based denitrification: Performance, microbial community and sludge characteristics. Bioresource Technology, 2019, 279, 393-397.	9.6	20
12	Anammox granule as new inoculum for start-up of anaerobic sulfide oxidation (ASO) process and its reverse start-up. Chemosphere, 2019, 217, 279-288.	8.2	19
13	Achieving completely anaerobic ammonium removal over nitrite (CAARON) in one single UASB reactor: Synchronous and asynchronous feeding regimes of organic carbon make a difference. Science of the Total Environment, 2019, 653, 342-350.	8.0	31
14	Transient disturbance of engineered ZnO nanoparticles enhances the resistance and resilience of anammox process in wastewater treatment. Science of the Total Environment, 2018, 622-623, 402-409.	8.0	64
15	Effects of inorganic phosphate on a high-rate anammox system: Performance and microbial community. Ecological Engineering, 2017, 101, 201-210.	3.6	30
16	Combined impacts of nanoparticles on anammox granules and the roles of EDTA and S 2â^' in attenuation. Journal of Hazardous Materials, 2017, 334, 49-58.	12.4	59
17	Mass transfer characteristics, rheological behavior and fractal dimension of anammox granules: The roles of upflow velocity and temperature. Bioresource Technology, 2017, 244, 117-124.	9.6	37
18	Insight into the short- and long-term effects of inorganic phosphate on anammox granule property. Bioresource Technology, 2016, 208, 161-169.	9.6	61

#	Article	IF	CITATIONS
19	Analyzing the revolution of anaerobic ammonium oxidation (anammox) performance and sludge characteristics under zinc inhibition. Applied Microbiology and Biotechnology, 2015, 99, 3221-3232.	3.6	35