Dounya Barrit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9529963/publications.pdf

Version: 2024-02-01

24 1,978 17 21 papers citations h-index g-index

24 24 3065
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Mini-review on all-inorganic lead-based perovskite solar cells: challenges and opportunities for production and upscaling. Emergent Materials, 2022, 5, 207-225.	3.2	6
2	Processing of Lead Halide Perovskite Thin Films Studied with In-Situ Real-Time X-ray Scattering. ACS Applied Materials & Samp; Interfaces, 2022, 14, 26315-26326.	4.0	5
3	Sequential Formation of Tunableâ€Bandgap Mixedâ€Halide Leadâ€Based Perovskites: In Situ Investigation and Photovoltaic Devices. Solar Rrl, 2021, 5, .	3.1	15
4	Perovskite Solar Cells toward Eco-Friendly Printing. Research, 2021, 2021, 9671892.	2.8	18
5	Wide and Tunable Bandgap MAPbBr _{3â^'<i>x</i>} Cl _{<i>x</i>} Hybrid Perovskites with Enhanced Phase Stability: In Situ Investigation and Photovoltaic Devices. Solar Rrl, 2021, 5, 2000718.	3.1	32
6	Impact of Residual Lead Iodide on Photophysical Properties of Lead Triiodide Perovskite Solar Cells. Energy Technology, 2020, 8, 1900627.	1.8	10
7	Ambient blade coating of mixed cation, mixed halide perovskites without dripping: <i>in situ</i> investigation and highly efficient solar cells. Journal of Materials Chemistry A, 2020, 8, 1095-1104.	5.2	68
8	Efficient Hybrid Mixedâ€lon Perovskite Photovoltaics: In Situ Diagnostics of the Roles of Cesium and Potassium Alkali Cation Addition. Solar Rrl, 2020, 4, 2000272.	3.1	19
9	<i>In situ</i> study of the film formation mechanism of organic–inorganic hybrid perovskite solar cells: controlling the solvate phase using an additive system. Journal of Materials Chemistry A, 2020, 8, 7695-7703.	5.2	29
10	Roomâ€Temperature Partial Conversion of αâ€FAPbl ₃ Perovskite Phase via Pbl ₂ Solvation Enables Highâ€Performance Solar Cells. Advanced Functional Materials, 2020, 30, 1907442.	7.8	41
11	Multi-cation Synergy Suppresses Phase Segregation in Mixed-Halide Perovskites. Joule, 2019, 3, 1746-1764.	11.7	159
12	Scalable Ambient Fabrication of High-Performance CsPbI2Br Solar Cells. Joule, 2019, 3, 2485-2502.	11.7	124
13	Interfacial Engineering at the 2D/3D Heterojunction for High-Performance Perovskite Solar Cells. Nano Letters, 2019, 19, 7181-7190.	4.5	163
14	Impact of the Solvation State of Lead Iodide on Its Twoâ€Step Conversion to MAPbI ₃ : An In Situ Investigation. Advanced Functional Materials, 2019, 29, 1807544.	7.8	45
15	Kinetic Stabilization of the Sol–Gel State in Perovskites Enables Facile Processing of Highâ€Efficiency Solar Cells. Advanced Materials, 2019, 31, e1808357.	11.1	76
16	Bismuthâ€Based Perovskiteâ€Inspired Solar Cells: In Situ Diagnostics Reveal Similarities and Differences in the Film Formation of Bismuth―and Leadâ€Based Films. Solar Rrl, 2019, 3, 1800305.	3.1	41
17	Dynamical Transformation of Two-Dimensional Perovskites with Alternating Cations in the Interlayer Space for High-Performance Photovoltaics. Journal of the American Chemical Society, 2019, 141, 2684-2694.	6.6	189
18	Stable Highâ€Performance Perovskite Solar Cells via Grain Boundary Passivation. Advanced Materials, 2018, 30, e1706576.	11.1	665

#	ARTICLE	lF	CITATION
19	High performance ambient-air-stable FAPbl ₃ perovskite solar cells with molecule-passivated Ruddlesden–Popper/3D heterostructured film. Energy and Environmental Science, 2018, 11, 3358-3366.	15.6	196
20	Hybrid perovskite solar cells: <i>In situ</i> investigation of solution-processed Pbl ₂ reveals metastable precursors and a pathway to producing porous thin films. Journal of Materials Research, 2017, 32, 1899-1907.	1.2	26
21	Improved Morphology and Efficiency of n–i–p Planar Perovskite Solar Cells by Processing with Glycol Ether Additives. ACS Energy Letters, 2017, 2, 1960-1968.	8.8	47
22	Deposition of transparent Aluminum Oxide (Al <inf>2</inf> O <inf>3</inf>) films on silvered CSP mirrors. , 2014, , .		0
23	Ralos car: Solar powered car with a hybrid backup system. , 2012, , .		3
24	In Situ Investigation and Photovoltaic Devices: Sequential Formation of Tunable-Bandgap Mixed-Halide Lead-based Perovskites. , 0, , .		1