
## Dounya Barrit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9529963/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Stable Highâ€Performance Perovskite Solar Cells via Grain Boundary Passivation. Advanced Materials,<br>2018, 30, e1706576.                                                                                                               | 21.0 | 665       |
| 2  | High performance ambient-air-stable FAPbI <sub>3</sub> perovskite solar cells with<br>molecule-passivated Ruddlesden–Popper/3D heterostructured film. Energy and Environmental Science,<br>2018, 11, 3358-3366.                          | 30.8 | 196       |
| 3  | Dynamical Transformation of Two-Dimensional Perovskites with Alternating Cations in the Interlayer<br>Space for High-Performance Photovoltaics. Journal of the American Chemical Society, 2019, 141,<br>2684-2694.                       | 13.7 | 189       |
| 4  | Interfacial Engineering at the 2D/3D Heterojunction for High-Performance Perovskite Solar Cells.<br>Nano Letters, 2019, 19, 7181-7190.                                                                                                   | 9.1  | 163       |
| 5  | Multi-cation Synergy Suppresses Phase Segregation in Mixed-Halide Perovskites. Joule, 2019, 3, 1746-1764.                                                                                                                                | 24.0 | 159       |
| 6  | Scalable Ambient Fabrication of High-Performance CsPbI2Br Solar Cells. Joule, 2019, 3, 2485-2502.                                                                                                                                        | 24.0 | 124       |
| 7  | Kinetic Stabilization of the Sol–Gel State in Perovskites Enables Facile Processing of Highâ€Efficiency<br>Solar Cells. Advanced Materials, 2019, 31, e1808357.                                                                          | 21.0 | 76        |
| 8  | Ambient blade coating of mixed cation, mixed halide perovskites without dripping: <i>in situ</i> in situinvestigation and highly efficient solar cells. Journal of Materials Chemistry A, 2020, 8, 1095-1104.                            | 10.3 | 68        |
| 9  | Improved Morphology and Efficiency of n–i–p Planar Perovskite Solar Cells by Processing with Glycol<br>Ether Additives. ACS Energy Letters, 2017, 2, 1960-1968.                                                                          | 17.4 | 47        |
| 10 | Impact of the Solvation State of Lead Iodide on Its Two‧tep Conversion to MAPbI <sub>3</sub> : An In<br>Situ Investigation. Advanced Functional Materials, 2019, 29, 1807544.                                                            | 14.9 | 45        |
| 11 | Bismuthâ€Based Perovskiteâ€Inspired Solar Cells: In Situ Diagnostics Reveal Similarities and Differences in the Film Formation of Bismuth―and Leadâ€Based Films. Solar Rrl, 2019, 3, 1800305.                                            | 5.8  | 41        |
| 12 | Roomâ€Temperature Partial Conversion of αâ€FAPbI <sub>3</sub> Perovskite Phase via<br>PbI <sub>2</sub> Solvation Enables Highâ€Performance Solar Cells. Advanced Functional Materials, 2020,<br>30, 1907442.                             | 14.9 | 41        |
| 13 | Wide and Tunable Bandgap MAPbBr <sub>3â^'<i>x</i></sub> Cl <sub><i>x</i></sub> Hybrid Perovskites<br>with Enhanced Phase Stability: In Situ Investigation and Photovoltaic Devices. Solar Rrl, 2021, 5,<br>2000718.                      | 5.8  | 32        |
| 14 | <i>In situ</i> study of the film formation mechanism of organic–inorganic hybrid perovskite solar<br>cells: controlling the solvate phase using an additive system. Journal of Materials Chemistry A, 2020,<br>8, 7695-7703.             | 10.3 | 29        |
| 15 | Hybrid perovskite solar cells: <i>In situ</i> investigation of solution-processed PbI <sub>2</sub><br>reveals metastable precursors and a pathway to producing porous thin films. Journal of Materials<br>Research, 2017, 32, 1899-1907. | 2.6  | 26        |
| 16 | Efficient Hybrid Mixedâ€lon Perovskite Photovoltaics: In Situ Diagnostics of the Roles of Cesium and<br>Potassium Alkali Cation Addition. Solar Rrl, 2020, 4, 2000272.                                                                   | 5.8  | 19        |
| 17 | Perovskite Solar Cells toward Eco-Friendly Printing. Research, 2021, 2021, 9671892.                                                                                                                                                      | 5.7  | 18        |
| 18 | Sequential Formation of Tunableâ€Bandgap Mixedâ€Halide Leadâ€Based Perovskites: In Situ Investigation and<br>Photovoltaic Devices. Solar Rrl, 2021, 5, .                                                                                 | 5.8  | 15        |

Dounya Barrit

| #  | Article                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Impact of Residual Lead Iodide on Photophysical Properties of Lead Triiodide Perovskite Solar Cells.<br>Energy Technology, 2020, 8, 1900627.                     | 3.8 | 10        |
| 20 | Mini-review on all-inorganic lead-based perovskite solar cells: challenges and opportunities for production and upscaling. Emergent Materials, 2022, 5, 207-225. | 5.7 | 6         |
| 21 | Processing of Lead Halide Perovskite Thin Films Studied with In-Situ Real-Time X-ray Scattering. ACS<br>Applied Materials & Interfaces, 2022, 14, 26315-26326.   | 8.0 | 5         |
| 22 | Ralos car: Solar powered car with a hybrid backup system. , 2012, , .                                                                                            |     | 3         |
| 23 | In Situ Investigation and Photovoltaic Devices: Sequential Formation of Tunable-Bandgap Mixed-Halide<br>Lead-based Perovskites. , 0, , .                         |     | 1         |
| 24 | Deposition of transparent Aluminum Oxide (Al <inf>2</inf> O <inf>3</inf> ) films on silvered CSP mirrors. , 2014, , .                                            |     | 0         |