Julien A Panetier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9529753/publications.pdf

Version: 2024-02-01

20 papers

1,181 citations

15 h-index 676716

22

g-index

24 all docs

24 docs citations

times ranked

24

1641 citing authors

#	Article	IF	CITATIONS
1	Catalytic proton reduction with transition metal complexes of the redox-active ligand bpy2PYMe. Chemical Science, 2013, 4, 3934.	3.7	166
2	A Highly Reactive Rhodium(I)–Boryl Complex as a Useful Tool for CH Bond Activation and Catalytic CF Bond Borylation. Angewandte Chemie - International Edition, 2010, 49, 3947-3951.	7.2	159
3	Synergistic Effects of Imidazolium-Functionalization on <i>fac</i> -Mn(CO) ₃ Bipyridine Catalyst Platforms for Electrocatalytic Carbon Dioxide Reduction. Journal of the American Chemical Society, 2019, 141, 6569-6582.	6.6	104
4	Mechanism of the Electrocatalytic Reduction of Protons with Diaryldithiolene Cobalt Complexes. Journal of the American Chemical Society, 2014, 136, 9364-9376.	6.6	102
5	Bioinspired design of redox-active ligands for multielectron catalysis: effects of positioning pyrazine reservoirs on cobalt for electro- and photocatalytic generation of hydrogen from water. Chemical Science, 2015, 6, 4954-4972.	3.7	99
6	CF ₃ â€"Ph Reductive Elimination from [(Xantphos)Pd(CF ₃)(Ph)]. Organometallics, 2012, 31, 1315-1328.	1.1	89
7	Catalytic Hydrodefluorination of Pentafluorobenzene by [Ru(NHC)(PPh ₃) _{)_{(CO)H₂]: A Nucleophilic Attack by a Metalâ€Bound Hydride Ligand Explains an Unusual <i>ortho</i>êRegioselectivity. Angewandte Chemie - International Edition, 2011, 50, 2783-2786.}}	7.2	76
8	Electrocatalytic CO ₂ reduction with nickel complexes supported by tunable bipyridyl-N-heterocyclic carbene donors: understanding redox-active macrocycles. Chemical Communications, 2018, 54, 3351-3354.	2.2	60
9	Rhodium(I) Silyl Complexes for C–F Bond Activation Reactions of Aromatic Compounds: Experimental and Computational Studies. Organometallics, 2013, 32, 3795-3807.	1.1	55
10	Robust and Selective Cobalt Catalysts Bearing Redox-Active Bipyridyl- <i>N</i> -heterocyclic Carbene Frameworks for Electrochemical CO ₂ Reduction in Aqueous Solutions. ACS Catalysis, 2019, 9, 7398-7408.	5.5	52
11	Functionalized Graphene as a Gatekeeper for Chiral Molecules: An Alternative Concept for Chiral Separation. Angewandte Chemie - International Edition, 2014, 53, 9957-9960.	7.2	44
12	Computational study of the hydrodefluorination of fluoroarenes at [Ru(NHC)(PR3)2(CO)(H)2]: predicted scope and regioselectivities. Dalton Transactions, 2013, 42, 7386.	1.6	42
13	Computational Characterization of Redox Non-Innocence in Cobalt-Bis(Diaryldithiolene)-Catalyzed Proton Reduction. Journal of Chemical Theory and Computation, 2016, 12, 223-230.	2.3	30
14	Computational Study of an Iron(II) Polypyridine Electrocatalyst for CO ₂ Reduction: Key Roles for Intramolecular Interactions in CO ₂ Binding and Proton Transfer. Inorganic Chemistry, 2020, 59, 8146-8160.	1.9	23
15	Directional Templating Mechanisms of Anisotropic Nanoparticles Using Poly(pyromellitic) Tj ETQq1 1 0.784314 rg	gBT/Overl	ock 10 Tf 50
16	Switchable Product Selectivity in Diazoalkane Coupling Catalyzed by a Two-Coordinate Cobalt Complex. ACS Catalysis, 2021, 11, 11160-11170.	5 . 5	6
17	Computational study on the reactivity of imidazolium-functionalized manganese bipyridyl tricarbonyl electrocatalysts [Mn[bpyMe(Im-R)](CO) ₃ Br] ⁺ (R = Me, Me ₂ and) Tj ETQq Chemistry Chemical Physics, 2021, 23, 14940-14951.	1 <u>1 0</u> .784	314 rgBT / <mark>O</mark> v
18	Computational Study for CO ₂ -to-CO Conversion over Proton Reduction Using [Re[bpyMe(lm-R)](CO) ₃ Cl] ⁺ (R = Me, Me ₂ , and Me ₄) Electrocatalysts and Comparison with Manganese Analogues. ACS Catalysis, 2021, 11, 12989-13000.	5.5	5

#	Article	IF	CITATIONS
19	Mechanistic Study of Tungsten Bipyridyl Tetracarbonyl Electrocatalysts for CO2 Fixation: Exploring the Roles of Explicit Proton Sources and Substituent Effects. Topics in Catalysis, 2022, 65, 325-340.	1.3	4
20	Chapter 2. Computational Studies on the Reactivity of Transition Metal Complexes Featuring N-Heterocyclic Carbene Ligands. RSC Catalysis Series, 2010, , 42-76.	0.1	0