
Avirut Chinkulkijniwat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9529734/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cement stabilisation of recycled concrete aggregate modified with polyvinyl alcohol. International Journal of Pavement Engineering, 2022, 23, 349-357.	4.4	19
2	New threshold for landslide warning in the southern part of Thailand integrates cumulative rainfall with event rainfall depth-duration. Natural Hazards, 2022, 113, 125-141.	3.4	12
3	Mesoscale approach to numerical modelling of thermo-mechanical behaviour of concrete at high temperature. European Journal of Environmental and Civil Engineering, 2021, 25, 1329-1348.	2.1	4
4	Steady-State Groundwater in Mechanical Stabilized Earth Walls of Various Dimensions with Geocomposite Back Drain Installation. International Journal of Geomechanics, 2021, 21, 04021017.	2.7	0
5	Improvement of flexural strength of concrete pavements using natural rubber latex. Construction and Building Materials, 2021, 282, 122704.	7.2	24
6	Interface shear behaviours between recycled concrete aggregate and geogrids for pavement applications. International Journal of Pavement Engineering, 2020, 21, 228-235.	4.4	24
7	Wetting-drying cycles durability of cement stabilised marginal lateritic soil/melamine debris blends for pavement applications. Road Materials and Pavement Design, 2020, 21, 500-518.	4.0	22
8	Properties of Asphalt Concrete Using Aggregates Composed of Limestone and Steel Slag Blends. Journal of Materials in Civil Engineering, 2020, 32, .	2.9	16
9	Compressibility of ultra-soft soil in the Mae Moh Mine, Thailand. Engineering Geology, 2020, 271, 105594.	6.3	11
10	Stability characteristics of shallow landslide triggered by rainfall. Journal of Mountain Science, 2019, 16, 2171-2183.	2.0	20
11	Recycled Concrete Aggregate Modified with Polyvinyl Alcohol and Fly Ash for Concrete Pavement Applications. Journal of Materials in Civil Engineering, 2019, 31, .	2.9	33
12	Effect of cumulative traffic and statistical predictive modelling of field skid resistance. Road Materials and Pavement Design, 2019, 20, 426-439.	4.0	18
13	Failure of riverbank protection structure and remedial approach: A case study in Suraburi province, Thailand. Engineering Failure Analysis, 2018, 91, 243-254.	4.0	12
14	Marginal lateritic soil/crushed slag blends as an engineering fill material. Soils and Foundations, 2018, 58, 786-795.	3.1	24
15	Closure to "Influence Factors Involving Rainfall-Induced Shallow Slope Failure: Numerical Study―by Somjai Yubonchit, Avirut Chinkulkijniwat, Suksun Horpibulsuk, Chatchai Jothityangkoon, Arul Arulrajah, and Apichat Suddeepong. International Journal of Geomechanics, 2018, 18, 07018004.	2.7	Ο
16	Numerical and sensitivity analysis of Bearing Reinforcement Earth (BRE) wall. KSCE Journal of Civil Engineering, 2017, 21, 195-208.	1.9	4
17	Influence Factors Involving Rainfall-Induced Shallow Slope Failure: Numerical Study. International Journal of Geomechanics, 2017, 17, .	2.7	20
18	Recycled glass as a supplementary filler material in spent coffee grounds geopolymers. Construction and Building Materials, 2017, 151, 18-27.	7.2	59

AVIRUT CHINKULKIJNIWAT

#	Article	IF	CITATIONS
19	Environmental impacts of utilizing waste steel slag aggregates as recycled road construction materials. Clean Technologies and Environmental Policy, 2017, 19, 949-958.	4.1	75
20	Effect of fly ash on properties of crushed brick and reclaimed asphalt in pavement base/subbase applications. Journal of Hazardous Materials, 2017, 321, 547-556.	12.4	81
21	Hydrological responses and stability analysis of shallow slopes with cohesionless soil subjected to continuous rainfall. Canadian Geotechnical Journal, 2016, 53, 2001-2013.	2.8	17
22	Recycled asphalt pavement – fly ash geopolymers as a sustainable pavement base material: Strength and toxic leaching investigations. Science of the Total Environment, 2016, 573, 19-26.	8.0	101
23	Pullout resistance of bearing reinforcement embedded in marginal lateritic soil at molding water contents. Geotextiles and Geomembranes, 2016, 44, 475-483.	4.6	13
24	Stabilisation of marginal lateritic soil using high calcium fly ash-based geopolymer. Road Materials and Pavement Design, 2016, 17, 877-891.	4.0	144
25	Durability against wetting–drying cycles of sustainable Lightweight Cellular Cemented construction material comprising clay and fly ash wastes. Construction and Building Materials, 2015, 77, 41-49.	7.2	68
26	Unit weight, strength and microstructure of a water treatment sludge–fly ash lightweight cellular geopolymer. Construction and Building Materials, 2015, 94, 807-816.	7.2	70
27	Modeling of Coupled Mechanical–Hydrological Processes in Compressed-Air-Assisted Tunneling in Unconsolidated Sediments. Transport in Porous Media, 2015, 108, 105-129.	2.6	10
28	Influence of Wet-Dry Cycles on Compressive Strength of Calcium Carbide Residue–Fly Ash Stabilized Clay. Journal of Materials in Civil Engineering, 2014, 26, 633-643.	2.9	131
29	Strength of sustainable non-bearing masonry units manufactured from calcium carbide residue and fly ash. Construction and Building Materials, 2014, 71, 210-215.	7.2	66
30	Calcium carbide residue: Alkaline activator for clay–fly ash geopolymer. Construction and Building Materials, 2014, 69, 285-294.	7.2	183
31	Water-Void to Cement Ratio Identity of Lightweight Cellular-Cemented Material. Journal of Materials in Civil Engineering, 2014, 26, .	2.9	31
32	Pullout resistance of bearing reinforcement embedded in coarse-grained soils. Geotextiles and Geomembranes, 2013, 36, 44-54.	4.6	58
33	Strength development in silty clay stabilized with calcium carbide residue and fly ash. Soils and Foundations, 2013, 53, 477-486.	3.1	190
34	Compaction behavior of fine-grained soils, lateritic soils and crushed rocks. Soils and Foundations, 2013, 53, 166-172.	3.1	26
35	Field strength development of repaired pavement using the recycling technique. Quarterly Journal of Engineering Geology and Hydrogeology, 2012, 45, 221-229.	1.4	29
36	Strength and compressibility of lightweight cemented clays. Applied Clay Science, 2012, 69, 11-21.	5.2	74

Avirut Chinkulkijniwat

#	Article	IF	CITATIONS
37	Strength development in blended cement admixed saline clay. Applied Clay Science, 2012, 55, 44-52.	5.2	125
38	Soil Stabilization by Calcium Carbide Residue and Fly Ash. Journal of Materials in Civil Engineering, 2012, 24, 184-193.	2.9	225
39	Numerical analysis of bearing reinforcement earth (BRE) wall. Geotextiles and Geomembranes, 2012, 32, 28-37.	4.6	19
40	Consolidation behavior of soil–cement column improved ground. Computers and Geotechnics, 2012, 43, 37-50.	4.7	85
41	Potential Micro-Hydropower Assessment in Mun River Basin, Thailand. , 2011, , .		3
42	Compressibility and permeability of Bangkok clay compared with kaolinite and bentonite. Applied Clay Science, 2011, 52, 150-159.	5.2	134
43	Performance of an earth wall stabilized with bearing reinforcements. Geotextiles and Geomembranes, 2011, 29, 514-524.	4.6	25
44	The potential micro-hydropower projects in Nakhon Ratchasima province, Thailand. Renewable Energy, 2011, 36, 1133-1137.	8.9	11
45	Analysis of strength development in cement-stabilized silty clay from microstructural considerations. Construction and Building Materials, 2010, 24, 2011-2021.	7.2	462