Philippe C Gros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9529428/publications.pdf

Version: 2024-02-01

127 papers

3,255 citations

147566 31 h-index 205818 48 g-index

146 all docs

146 docs citations

times ranked

146

2576 citing authors

#	Article	IF	CITATIONS
1	A new record excited state ³ MLCT lifetime for metalorganic iron(<scp>ii</scp>) complexes. Physical Chemistry Chemical Physics, 2016, 18, 12550-12556.	1.3	132
2	Hiyama Cross-Coupling of Chloro-, Fluoro-, and Methoxypyridyltrimethylsilanes: Room-Temperature Novel Access to Functional Bi(het)aryl. Organic Letters, 2005, 7, 697-700.	2.4	126
3	An Ironâ€Based Photosensitizer with Extended Excitedâ€State Lifetime: Photophysical and Photovoltaic Properties. European Journal of Inorganic Chemistry, 2015, 2015, 2469-2477.	1.0	124
4	Bimetallic Combinations for Dehalogenative Metalation Involving Organic Compounds. Chemical Reviews, 2014, 114, 1207-1257.	23.0	110
5	Unusual C-6 Lithiation of 2-Chloropyridine-Mediated by BuLiâ ² Me2N(CH2)2OLi. New Access to 6-Functional-2-chloropyridines and Chloro-bis-heterocycles. Organic Letters, 2000, 2, 803-805.	2.4	84
6	nBuLi/Lithium Aminoalkoxide Aggregates: New and Promising Lithiating Agents for Pyridine Derivatives. European Journal of Organic Chemistry, 2002, 2002, 3375-3383.	1.2	82
7	Deprotonative Metalation of Substituted Benzenes and Heteroaromatics Using Amino/Alkyl Mixed Lithium–Zinc Combinations. Chemistry - A European Journal, 2010, 16, 8191-8201.	1.7	82
8	NHC-Based Iron Sensitizers for DSSCs. Inorganics, 2018, 6, 63.	1.2	76
9	Combinations of Alkyllithiums and Lithium Aminoalkoxides for Generation of Functional Pyridine Organometallics and Derivatives. European Journal of Organic Chemistry, 2009, 2009, 4199-4209.	1.2	75
10	First Direct C-2-Lithiation of 4-DMAP. Convenient Access to Reactive Functional Derivatives and Ligands. Journal of Organic Chemistry, 2002, 67, 238-241.	1.7	61
11	Heteroleptic Pyridylâ€Carbene Iron Complexes with Tuneable Electronic Properties. European Journal of Inorganic Chemistry, 2014, 2014, 3747-3753.	1.0	59
12	Deprotonative Metalation of Chloro―and Bromopyridines Using Amidoâ€Based Bimetallic Species and Regioselectivityâ€Computed CH Acidity Relationships. Chemistry - A European Journal, 2011, 17, 13284-13297.	1.7	55
13	Combination of Cobalt and Iron Polypyridine Complexes for Improving the Charge Separation and Collection in Ru(terpyridine) _{2 < sub>â€Sensitised Solar Cells. Chemistry - A European Journal, 2010, 16, 2611-2618.}	1.7	54
14	New polystyrene-supported stable source of 2-pyridylboron reagent for Suzuki couplings in combinatorial chemistry. Tetrahedron Letters, 2004, 45, 6239-6241.	0.7	53
15	Tuning of Ruthenium Complex Properties Using Pyrrole- and Pyrrolidine-Containing Polypyridine Ligands. Inorganic Chemistry, 2007, 46, 2272-2277.	1.9	52
16	Synthesis of azafluorenones and related compounds using deprotocupration–aroylation followed by intramolecular direct arylation. Tetrahedron, 2013, 69, 10123-10133.	1.0	51
17	Theoretical Study of New Ruthenium-Based Dyes for Dye-Sensitized Solar Cells. Journal of Physical Chemistry A, 2011, 115, 3596-3603.	1.1	49
18	Computed CH Acidity of Biaryl Compounds and Their Deprotonative Metalation by Using a Mixed Lithium/Zincâ€₹MP Base. Chemistry - A European Journal, 2013, 19, 7944-7960.	1.7	48

#	Article	IF	Citations
19	Interfacial charge separation and photovoltaic efficiency in Fe(<scp>ii</scp>)–carbene sensitized solar cells. Physical Chemistry Chemical Physics, 2016, 18, 28069-28081.	1.3	48
20	Solid Phase Synthesis of Pyridine-Based Derivatives from a 2-Chloro-5-Bromopyridine Scaffold. ACS Combinatorial Science, 2005, 7, 879-886.	3.3	42
21	Metalation of Pyridines with <i>n</i> BuLiâ^'Liâ^'Aminoalkoxide Mixed Aggregates: The Origin of Chemoselectivity. Journal of the American Chemical Society, 2010, 132, 2410-2416.	6.6	38
22	Lithiation of 2-Heterosubstituted Pyridines with BuLiâ^'LiDMAE:Â Evidence for Regiospecificity at C-6. Journal of Organic Chemistry, 2002, 67, 234-237.	1.7	37
23	Synthesis and Computational Study of a Pyridylcarbene Fe(II) Complex: Unexpected Effects of <i>fac</i> / <i>mer</i> Isomerism in Metal-to-Ligand Triplet Potential Energy Surfaces. Inorganic Chemistry, 2018, 57, 10431-10441.	1.9	37
24	Iron(<scp>ii</scp>) complexes with diazinyl-NHC ligands: impact of π-deficiency of the azine core on photophysical properties. Dalton Transactions, 2019, 48, 10915-10926.	1.6	37
25	Impact of the <i>fac</i> / <i>mer</i> Isomerism on the Excited-State Dynamics of Pyridyl-carbene Fe(II) Complexes. Inorganic Chemistry, 2019, 58, 5069-5081.	1.9	35
26	Reaction of Epoxides with Chlorocarbonylated Compounds Catalyzed by Hexaalkylguanidinium Chloride. Journal of Organic Chemistry, 1994, 59, 4925-4930.	1.7	34
27	Recent advances in iron-complexes as drug candidates for cancer therapy: reactivity, mechanism of action and metabolites. Dalton Transactions, 2020, 49, 11451-11466.	1.6	34
28	A Theoretical Study on nBuLi/Lithium Aminoalkoxide Aggregation in Hexane and THF. Journal of Organic Chemistry, 2008, 73, 9393-9402.	1.7	33
29	Homoleptic Zincateâ€Promoted Roomâ€Temperature Halogen–Metal Exchange of Bromopyridines. Chemistry - A European Journal, 2010, 16, 12425-12433.	1.7	33
30	Selective ring-opening of I‰-epoxyalkyl (meth)acrylates. An efficient access to bifunctional monomers. Tetrahedron Letters, 1997, 38, 8699-8702.	0.7	32
31	Pyridino-directed lithiation of anisylpyridines: new access to functional pyridylphenols. Tetrahedron, 2005, 61, 3261-3269.	1.0	32
32	TMSCH2Li and TMSCH2Liâ^'LiDMAE:Â Efficient Reagents for Noncryogenic Halogenâ^'Lithium Exchange in Bromopyridines. Journal of Organic Chemistry, 2007, 72, 4978-4980.	1.7	32
33	Synthesis, crystal structure and antibacterial activity of new highly functionalized ionic compounds based on the imidazole nucleus. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 1274-1278.	1.0	32
34	Side-Chain Retention During Lithiation of 4-Picoline and 3,4-Lutidine: Easy Access to Molecular Diversity in Pyridine Series. European Journal of Organic Chemistry, 2003, 2003, 3855-3860.	1.2	31
35	Selective Lithiation of 4-(1H-1-Pyrrolyl)pyridine. Access to New Electron-Releasing Ligands. Journal of Organic Chemistry, 2004, 69, 7914-7918.	1.7	31
36	First Regioselective C-2 Lithiation of 3- and 4-Chloropyridines. European Journal of Organic Chemistry, 2001, 2001, 603-606.	1,2	30

#	Article	IF	CITATIONS
37	Pyrrolidine-Containing Polypyridines: New Ligands for Improved Visible Light Absorption by Ruthenium Complexes. Journal of Organic Chemistry, 2006, 71, 566-571.	1.7	30
38	Chiral Organomagnesiates as Dual Reagents for Bromine–Magnesium Exchange of 2â€Bromopyridine and Access to Chiral αâ€Substituted 2â€Pyridylcarbinols. European Journal of Organic Chemistry, 2012, 2012, 53-57.	1,2	29
39	Lithiation of 2-Chloro- and 2-Methoxypyridine with Lithium Dialkylamides: Initial Ortho-Direction or Subsequent Lithium Ortho-Stabilization?. Journal of Organic Chemistry, 2003, 68, 2243-2247.	1.7	28
40	Efficient two-step access to azafluorenones and related compounds. Tetrahedron Letters, 2013, 54, 3154-3157.	0.7	27
41	Pyridylmagnesiates: generation by bromine–metal exchange and enantioselective addition to aldehydes. Tetrahedron, 2012, 68, 4018-4028.	1.0	26
42	Straightforward access to methyl-polyheterocycles from direct para-lithiation of 3-picoline. Tetrahedron Letters, 2001, 42, 1879-1881.	0.7	25
43	First one-pot chemo-, regio- and enantioselective functionalisation of pyridine compounds mediated by BuLi-(S)-(â^')-N-methyl-2-pyrrolidine methoxide. Tetrahedron: Asymmetry, 2001, 12, 2631-2635.	1.8	25
44	Homoleptic Ruthenium Complex Bearing Dissymmetrical 4-Carboxy-4′-pyrrolo-2,2′-bipyridine for Efficient Sensitization of TiO ₂ in Solar Cells. Inorganic Chemistry, 2009, 48, 8030-8036.	1.9	25
45	Record power conversion efficiencies for iron(<scp>ii</scp>)-NHC-sensitized DSSCs from rational molecular engineering and electrolyte optimization. Journal of Materials Chemistry A, 2021, 9, 3540-3554.	5.2	25
46	Dye-sensitized solar cells based on PEDOP as a hole conductive medium. Inorganica Chimica Acta, 2008, 361, 627-634.	1.2	24
47	Synthesis of heterotactic PLA from rac-lactide using hetero-bimetallic Mg/Zn–Li systems. Journal of Organometallic Chemistry, 2015, 796, 47-52.	0.8	24
48	Regioselective functionalisation of 2-(diphenylphosphino) pyridine: direct lithiation at the pyridine C-6 position. Tetrahedron Letters, 2000, 41, 303-306.	0.7	23
49	Structural Studies of (<i>rac</i>)-BIPHEN Organomagnesiates and Intermediates in the Halogen–Metal Exchange of 2-Bromopyridine. Organometallics, 2015, 34, 2550-2557.	1.1	22
50	TMSCH2Li–LiDMAE: a new nonnucleophilic reagent for C-2 lithiation of halopyridines. Tetrahedron, 2006, 62, 6166-6171.	1.0	21
51	Ruthenium complexes bearing π-extended pyrrolo-styryl-bipyridine ligand: electronic properties and evaluation as photosensitizers. Dalton Transactions, 2009, , 63-70.	1.6	21
52	Functional polypyridine ligands from copper-mediated room temperature coupling of 4-chloro-2-trimethylsilylpyridine. Tetrahedron Letters, 2010, 51, 3558-3560.	0.7	21
53	Lithium Cadmate-Mediated Deprotonative Metalation of Anisole: Experimental and Computational Study. Journal of Organic Chemistry, 2010, 75, 3117-3120.	1.7	21
54	Ground and Excited State Properties of New Porphyrin Based Dyads: A Combined Theoretical and Experimental Study Journal of Physical Chemistry A, 2012, 116, 10736-10744.	1.1	21

#	Article	IF	Citations
55	New dyads using (metallo)porphyrins as ancillary ligands in polypyridine ruthenium complexes. Synthesis and electronic properties. Dalton Transactions, 2012, 41, 12865.	1.6	21
56	Toward Luminescent Iron Complexes: Unravelling the Photophysics by Computing Potential Energy Surfaces. ChemPhotoChem, 2019, 3, 666-683.	1.5	21
57	Recombination and regeneration dynamics in FeNHC(<scp>ii</scp>)-sensitized solar cells. Chemical Communications, 2020, 56, 543-546.	2.2	21
58	Towards Iron(II) Complexes with Octahedral Geometry: Synthesis, Structure and Photophysical Properties. Molecules, 2020, 25, 5991.	1.7	21
59	Deprotonative metalation of substituted aromatics using mixed lithium–cobalt combinations. Tetrahedron, 2010, 66, 8904-8910.	1.0	20
60	TBAF-Catalysed silver oxide-mediated cross-coupling of functional trimethysilylpyridines: access to arylpyridines and bihetaryl compounds. Organic and Biomolecular Chemistry, 2011, 9, 1768.	1.5	20
61	Enantioselective Metalation of <i>N</i> , <i>N</i> êDiisopropylferrocenecarboxamide and Methyl Ferrocenecarboxylate Using Lithiumâ€Metal Chiral Bases. European Journal of Organic Chemistry, 2012, 2012, 6051-6057.	1.2	20
62	New ruthenium compounds bearing semicarbazone 2-formylopyridine moiety: Playing with auxiliary ligands for tuning the mechanism of biological activity. Journal of Inorganic Biochemistry, 2017, 175, 80-91.	1.5	20
63	Remarkable Effect of 4-Substituted 2,2′-Bipyridine Ligands on the Stereochemistry of Ruthenium(II) Complexes. European Journal of Inorganic Chemistry, 2008, 2008, 1747-1751.	1.0	19
64	Unexplored features of Ru(<scp>ii</scp>) polypyridyl complexes – towards combined cytotoxic and antimetastatic activity. Metallomics, 2020, 12, 784-793.	1.0	19
65	Strong π-delocalization and substitution effect on electronic properties of dithienylpyrrole-containing bipyridine ligands and corresponding ruthenium complexes. Dalton Transactions, 2012, 41, 4833.	1.6	18
66	Ultrafast Spectroscopy of Fe(II) Complexes Designed for Solarâ€Energy Conversion: Current Status and Open Questions. ChemPhysChem, 2022, 23, .	1.0	18
67	Solid phase palladium-catalysed Cî—¸C bond formation in the pyridine series: access to aryl and alkynyl pyridylpiperazines. Tetrahedron Letters, 2003, 44, 5613-5616.	0.7	17
68	Aminoalkoxide-Mediated Formation and Stabilization of Phenylpyridyllithium:Â Straightforward Access to Phenylpyridine Derivatives. Journal of Organic Chemistry, 2003, 68, 2028-2029.	1.7	17
69	Enantioselective ethylation of aldehydes using a regenerable polymer-supported N-picolylvalinol tridentate ligand. Tetrahedron, 2007, 63, 10693-10697.	1.0	17
70	Bromine–lithium exchange under non-cryogenic conditions: TMSCH2Li–LiDMAE promoted C-2 lithiation of 2,3-dibromopyridine. Chemical Communications, 2008, , 4813.	2.2	17
71	Straightforward access to enantioenriched pyrazyl alcohols using chiral organomagnesiates. Tetrahedron: Asymmetry, 2012, 23, 1678-1682.	1.8	17
72	Efficient and Regioselective Access to Bis-heterocycles via Palladium-Catalysed Coupling of Organostannanes and Organozincates Derived from C-6 Lithiated 2-Methoxypyridine. Synthesis, 1999, 1999, 754-756.	1.2	16

#	Article	IF	CITATIONS
73	First C-3 lithiation of DMAP: a new entry into chemical tuning of acylation catalysts. Chemical Communications, 2006, , 2673.	2.2	16
74	(Chiral) lithium–(magnesium–)zinc and lithium–cobalt combinations as dual reagents for aromatic deproto-metalation and aryl transfer to aldehydes. Tetrahedron, 2012, 68, 8761-8766.	1.0	16
75	Ruthenium Polypyridine Complexes Bearing Pyrroles and π-Extended Analogues. Synthesis, Spectroelectronic, Electrochemical, and Photovoltaic Properties. Organometallics, 2014, 33, 4590-4606.	1.1	16
76	2,5-Dithienylpyrrole (DTP) as a donor component in DTP–π–A organic sensitizers: photophysical and photovoltaic properties. RSC Advances, 2015, 5, 4041-4050.	1.7	16
77	Probing optical properties of thiophene derivatives for two-photon absorption. Theoretical Chemistry Accounts, 2017, 136, 1.	0.5	16
78	Photophysical Investigation of Iron(II) Complexes Bearing Bidentate Annulated Isomeric Pyridine-NHC Ligands. Journal of Physical Chemistry C, 2020, 124, 18379-18389.	1.5	16
79	A Series of Iron(II)â€NHC Sensitizers with Remarkable Power Conversion Efficiency in Photoelectrochemical Cells**. Chemistry - A European Journal, 2021, 27, 16260-16269.	1.7	16
80	Deproto-metallation using mixed lithium–zinc and lithium–copper bases and computed CH acidity of 2-substituted quinolines. RSC Advances, 2014, 4, 19602-19612.	1.7	15
81	Controlling charge-transfer properties through a microwave-assisted mono- or bis-annulation of dialkynyl-N-(het)arylpyrroles. Organic and Biomolecular Chemistry, 2017, 15, 8568-8575.	1.5	15
82	Convenient multi-gram scale synthesis of polybrominated imidazoles building blocks. Tetrahedron Letters, 2006, 47, 1949-1951.	0.7	14
83	Structure of Mixed Alkyllithium/Lithium Alkoxide Aggregates in Ethereal Solvents. Insights from Combined QM/MM Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2009, 113, 6459-6467.	1.2	14
84	Design and synthesis of new Ru-complexes as potential photo-sensitizers: experimental and TD-DFT insights. RSC Advances, 2016, 6, 69647-69657.	1.7	14
85	Photophysical properties of bichromophoric Fe(II) complexes bearing an aromatic electron acceptor. Theoretical Chemistry Accounts, 2019, 138, 1.	0.5	14
86	New Ruthenium Complexes with 4-(1H-Pyrrol-1-yl)-Substituted Polypyridine Ligandsâ^' Electrochemical and Spectroscopic Properties. European Journal of Inorganic Chemistry, 2004, 2004, 3984-3986.	1.0	13
87	TMSCH2Li-induced regioselective lithiation of (S)-nicotine. Organic and Biomolecular Chemistry, 2006, 4, 4331.	1.5	13
88	Anticancer activity of ruthenium(II) polypyridine complexes bearing pyrrolidine substituents. Inorganica Chimica Acta, 2016, 443, 86-90.	1.2	13
89	First Direct Lithiation of 2-Pyridylpiperazine on Solid Phase. Organic Letters, 2002, 4, 1759-1761.	2.4	12
90	Red-emitting neutral rhenium(<scp>i</scp>) complexes bearing a pyridyl pyridoannelated N-heterocyclic carbene. Dalton Transactions, 2020, 49, 3102-3111.	1.6	12

#	Article	IF	Citations
91	First selective lithiation of pyridylpiperazines: straightforward access to potent pharmacophores. Tetrahedron, 2005, 61, 4761-4768.	1.0	11
92	Organomagnesiateâ€Promoted Enantioselective Cascade Process: Straightforward Access to Chiral 3â€Substituted Isobenzofuranones. ChemistrySelect, 2018, 3, 3939-3942.	0.7	11
93	Selective Esterification Reaction Involving Hexaalkyl Guanidinium Chloride Catalyst. Synthetic Communications, 1993, 23, 1835-1842.	1.1	10
94	A new method for benzylic deprotonative lithiation: synthesis of 1- and 1,3-disubstituted (aza)phthalans. Tetrahedron Letters, 2002, 43, 4045-4048.	0.7	10
95	Hydrophilic Ethyleneâ€Glycolâ€Based Ruthenium Sensitizers for Aqueous Dyeâ€Sensitized Solar Cells. European Journal of Inorganic Chemistry, 2016, 2016, 33-39.	1.0	10
96	2,2′-(Ethane-1,2-diyl)bis[2-(5-bromothiophen-2-yl)-1,3-dioxolane] at 100â€K refined using a multipolar atom model. Acta Crystallographica Section C: Crystal Structure Communications, 2011, 67, o329-o333.	0.4	9
97	Interaction of Iron II Complexes with B-DNA. Insights from Molecular Modeling, Spectroscopy, and Cellular Biology. Frontiers in Chemistry, 2015, 3, 67.	1.8	9
98	Structural and metal–halogen exchange reactivity studies of sodium magnesiate biphenolate complexes. Dalton Transactions, 2020, 49, 5257-5263.	1.6	9
99	Aggregative activation and carbanion chemistry: complex base deprotonation and directed functionalisation of dithioacetals. Tetrahedron, 1996, 52, 15147-15156.	1.0	8
100	Combined ab initio and classical molecular dynamics simulations of alkyl-lithium aggregates in ethereal solutions. Theoretical Chemistry Accounts, 2008, 121, 321-326.	0.5	8
101	Dehalogenative and Deprotonative Lithiation of Pyridines: A Second Wind for Trimethylsilylmethylithium (TMSCH2Li). Current Organic Chemistry, 2011, 15, 2329-2339.	0.9	8
102	Enantioselective deprotometalation of N,N-dialkyl ferrocenecarboxamides using metal amides. New Journal of Chemistry, 2019, 43, 14898-14907.	1.4	8
103	Structural and morphological changes of breast cancer cells induced by iron(<scp>ii</scp>) complexes. Nanoscale, 2022, 14, 2735-2749.	2.8	8
104	Concomitant morpholine ring contraction and pyridine lithiation in 4-morpholinopyridine: straightforward access to N-pyridyl oxazolidines. Tetrahedron Letters, 2008, 49, 4717-4719.	0.7	7
105	Novel Ru-based sunlight harvesters bearing dithienylpyrrolo (DTP)-bipyridine ligands: Synthesis, characterization and photovoltaic properties. Dyes and Pigments, 2014, 101, 318-328.	2.0	7
106	Vibrational Coherence Spectroscopy Identifies Ultrafast Branching in an Iron(II) Sensitizer. Journal of Physical Chemistry Letters, 2021, 12, 8560-8565.	2.1	7
107	Bidentate Pyridylâ€NHC Ligands: Synthesis, Ground and Excited State Properties of Their Iron(II) Complexes and the Role of the fac/mer Isomerism. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	7
108	Modern Synthetic Methods for Preparation of N-Containing Bisheteroaromatic Compounds. Current Organic Chemistry, 2003, 7, 629-648.	0.9	6

#	Article	IF	Citations
109	Efficient Synthesis of Vinylcycloalkylphenyl Sulfides from DME-Activated NANH ₂ Induced Intramolecular Dialkylation of Allylphenylsulfide. Synthetic Communications, 2000, 30, 795-801.	1.1	5
110	One-pot dialkylation of allylphenylsulfide induced by aminoalkoxides-activated NaNH2. Application to the synthesis of unsymmetrical ketones. Tetrahedron, 1999, 55, 9261-9268.	1.0	4
111	Metallopolymers from ruthenium and iron pyrrole-containing π-extended complexes as model components for solid state solar cells. Inorganica Chimica Acta, 2010, 363, 1404-1408.	1.2	4
112	Synthesis and Properties of New Multiple TCNE Adducts from Dialkynylâ€∢i>N⟨/i>â€(het)arylpyrroles. European Journal of Organic Chemistry, 2019, 2019, 4341-4348.	1.2	4
113	Enantioselective deprotometalation of alkyl ferrocenecarboxylates using bimetallic bases. New Journal of Chemistry, 2021, 45, 22579-22590.	1.4	4
114	Metallation versus Heteroatom Lithium Complexation: Mono- and ÂDilithiation of Dipyridylpiperazines. Synlett, 2006, 2006, 1379-1383.	1.0	3
115	Other Stoichiometric Metalation Reactions on Pyrimidine and Quinazoline. Topics in Heterocyclic Chemistry, 2012, , 1-20.	0.2	3
116	Tuneable access to indole, indolone, and cinnoline derivatives from a common 1,4-diketone Michael acceptor. Beilstein Journal of Organic Chemistry, 2020, 16, 1722-1731.	1.3	3
117	Ir ^{III} â^'Pyridoannelated Nâ€Heterocyclic Carbene Complexes: Potent Theranostic Agents via Mitochondria Targeting. European Journal of Inorganic Chemistry, 2021, 2021, 1551-1564.	1.0	3
118	First Immobilization of Chiral Menthol-Derived Picoline on Solid Support and Evaluation for Asymmetric Catalysis. Letters in Organic Chemistry, 2007, 4, 175-180.	0.2	2
119	Molecular engineering for optical properties of 5-substituted-1,10-phenanthroline-based Ru(ii) complexes. Dalton Transactions, 2021, 50, 10119-10132.	1.6	2
120	Efficient Access to Arylated Azaâ€ullazines by Regioselective Functionalization of their Pyridine Ring by Hâ°Li Exchange and Electrophilic Substitution. European Journal of Organic Chemistry, 2021, 2021, 3331-3339.	1.2	2
121	Effects of Methyl-Substituted Phenanthrolines on the Performance of Ruthenium(II) Dye-Sensitizers. Journal of the Brazilian Chemical Society, 2015, , .	0.6	2
122	Impact of Polypyridyl Ru Complexes on Angiogenesis—Contribution to Their Antimetastatic Activity. International Journal of Molecular Sciences, 2022, 23, 7708.	1.8	2
123	First activation of sodium amide by polymer-supported alkoxides and amino-alkoxides. Reactive and Functional Polymers, 2000, 43, 117-122.	2.0	1
124	Unusualt-BuLi Induced Ortholithiation versus Halogen-Lithium Exchange in Bromopyridines: Two Alternative Strategies for Functionalization. Synlett, 2004, 2004, 2319-2322.	1.0	1
125	Critical Ligand and Salt Effects in Organomagnesiateâ€Promoted 3,3â€Disubstituted Phthalides Synthesis from 2â€lodobenzoate Derivatives. European Journal of Organic Chemistry, 2021, 2021, 4835-4845.	1.2	1

Ultrafast excited state dynamics of NHC-Fe(II) complexes designed for light harvesting (Conference) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

#	Article	IF	CITATIONS
127	Hydrophilic Ethylene-Glycol-Based Ruthenium Sensitizers for Aqueous Dye-Sensitized Solar Cells. European Journal of Inorganic Chemistry, 2016, 2016, 2-2.	1.0	0