Katherine M Wortman-Otto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9529420/publications.pdf

Version: 2024-02-01

2258059 1872680 13 44 3 6 citations g-index h-index papers 13 13 13 21 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Role of Molecular Structure on Modulating the Interfacial Dynamics for Shallow Trench Isolation (STI) Chemical Mechanical Planarization (CMP) Applications. ECS Journal of Solid State Science and Technology, 2021, 10, 024009.	1.8	7
2	Striking a balance: Role of supramolecular assemblies on the modulation of the chemical and mechanical contributions during Post-STI CMP cleaning. Materials Chemistry and Physics, 2021, 259, 124170.	4.0	7
3	Communication—An Analysis of Shear Forces in Post-CMP PVA Brush Scrubbing for Stationary and Rotating Wafers. ECS Journal of Solid State Science and Technology, 2021, 10, 034002.	1.8	3
4	Understanding the Role of Slurry Additive Molecular Structure on Modulating the Interfacial Dynamics for Oxide CMP Applications. ECS Meeting Abstracts, 2021, MA2021-01, 818-818.	0.0	0
5	Evaluation of a Photosensitizer Redox Couple for Oxide Removal Rate Tunability in Shallow Trench Isolation Chemical Mechanical Planarization. ECS Journal of Solid State Science and Technology, 2021, 10, 063001.	1.8	2
6	Understanding the Reasons Behind Defect Levels in Post-Copper-CMP Cleaning Processes with Different Chemistries and PVA Brushes. ECS Journal of Solid State Science and Technology, 2021, 10, 064011.	1.8	1
7	(Invited) Synergistic Effect of Polyvinyl Alcohol (PVA) Brush Type and Cleaning Chemistry Formulation for Copper (Cu) Post-Chemical Mechanical Planarization (p-CMP) Cleaning. ECS Meeting Abstracts, 2021, MA2021-02, 655-655.	0.0	O
8	Synergistic Effect of Pad "Macroporous-Reactors―on Passivation Mechanisms to Modulate Cu Chemical Mechanical Planarization (CMP) Performance. ECS Journal of Solid State Science and Technology, 2020, 9, 054005.	1.8	1
9	Strategic Design of Antimicrobial Hydrogels Containing Biomimetic Additives for Enhanced Matrix Responsiveness and HDFa Wound Healing Rates. ACS Applied Bio Materials, 2020, 3, 5750-5758.	4.6	4
10	Development of "Soft―Cleaning Chemistries for Enhanced STI Post-CMP Cleaning. ECS Transactions, 2019, 92, 165-174.	0.5	12
11	Unraveling Slurry Chemistry/Nanoparticle/Polymeric Membrane Adsorption Relevant to Cu Chemical Mechanical Planarization (CMP) Filtration Applications. ECS Journal of Solid State Science and Technology, 2019, 8, P3022-P3027.	1.8	2
12	Tribological Characterization of Anionic Supramolecular Assemblies in Post-STI-CMP Cleaning Solution Using a Novel Post-CMP PVA Brush Scrubber. Solid State Phenomena, 0, 314, 264-269.	0.3	1
13	Contact Vs. Non-Contact Cleaning: Correlating Interfacial Reaction Mechanisms to Processing Methodologies for Enhanced FEOL/BEOL Post-CMP Cleaning. Solid State Phenomena, 0, 314, 237-246.	0.3	4