
Matthew G Haugh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9529031/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials, 2010, 31, 461-466.	5.7	1,635
2	Crosslinking and Mechanical Properties Significantly Influence Cell Attachment, Proliferation, and Migration Within Collagen Glycosaminoglycan Scaffolds. Tissue Engineering - Part A, 2011, 17, 1201-1208.	1.6	265
3	Mesenchymal stem cell fate is regulated by the composition and mechanical properties of collagen–glycosaminoglycan scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 11, 53-62.	1.5	228
4	The effect of dehydrothermal treatment on the mechanical and structural properties of collagenâ€GAG scaffolds. Journal of Biomedical Materials Research - Part A, 2009, 89A, 363-369.	2.1	220
5	Novel Freeze-Drying Methods to Produce a Range of Collagen–Glycosaminoglycan Scaffolds with Tailored Mean Pore Sizes. Tissue Engineering - Part C: Methods, 2010, 16, 887-894.	1.1	211
6	The effects of collagen concentration and crosslink density on the biological, structural and mechanical properties of collagen-GAG scaffolds for bone tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2009, 2, 202-209.	1.5	192
7	Functional properties of cartilaginous tissues engineered from infrapatellar fat pad-derived mesenchymal stem cells. Journal of Biomechanics, 2010, 43, 920-926.	0.9	105
8	Engineered protein coatings to improve the osseointegration of dental and orthopaedic implants. Biomaterials, 2016, 83, 269-282.	5.7	105
9	Osteocyte differentiation is regulated by extracellular matrix stiffness and intercellular separation. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 28, 183-194.	1.5	85
10	Gene expression by marrow stromal cells in a porous collagen–glycosaminoglycan scaffold is affected by pore size and mechanical stimulation. Journal of Materials Science: Materials in Medicine, 2008, 19, 3455-3463.	1.7	79
11	Investigating the interplay between substrate stiffness and ligand chemistry in directing mesenchymal stem cell differentiation within 3D macro-porous substrates. Biomaterials, 2018, 171, 23-33.	5.7	64
12	Heat-shock-induced cellular responses to temperature elevations occurring during orthopaedic cutting. Journal of the Royal Society Interface, 2012, 9, 3503-3513.	1.5	57
13	Temporal and Spatial Changes in Cartilage-Matrix-Specific Gene Expression in Mesenchymal Stem Cells in Response to Dynamic Compression. Tissue Engineering - Part A, 2011, 17, 3085-3093.	1.6	51
14	Estrogen Withdrawal from Osteoblasts and Osteocytes Causes Increased Mineralization and Apoptosis. Hormone and Metabolic Research, 2014, 46, 537-545.	0.7	32
15	Investigation of the optimal timing for chondrogenic priming of MSCs to enhance osteogenic differentiation <i>in vitro</i> as a bone tissue engineering strategy. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, E250-E262.	1.3	30
16	Integrating concepts of material mechanics, ligand chemistry, dimensionality and degradation to control differentiation of mesenchymal stem cells. Current Opinion in Solid State and Materials Science, 2016, 20, 171-179.	5.6	28
17	A fluid–structure interaction model to characterize bone cell stimulation in parallel-plate flow chamber systems. Journal of the Royal Society Interface, 2013, 10, 20120900.	1.5	27
18	An <i>In Vitro</i> Bone Tissue Regeneration Strategy Combining Chondrogenic and Vascular Priming Enhances the Mineralization Potential of Mesenchymal Stem Cells <i>In Vitro</i> While Also Allowing for Vessel Formation. Tissue Engineering - Part A, 2015, 21, 1320-1332.	1.6	27

MATTHEW G HAUGH

#	Article	IF	CITATIONS
19	The application of plastic compression to modulate fibrin hydrogel mechanical properties. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 16, 66-72.	1.5	20
20	Local and regional mechanical characterisation of a collagen-glycosaminoglycan scaffold using high-resolution finite element analysis. Journal of the Mechanical Behavior of Biomedical Materials, 2010, 3, 292-302.	1.5	13
21	Facile Approach to Covalent Copolypeptide Hydrogels and Hybrid Organohydrogels. ACS Macro Letters, 2018, 7, 944-949.	2.3	12
22	The Role of Integrins in Osteocyte Response to Mechanical Stimulus. , 2012, , .		2
23	Primary Cilia Knockdown Reduces the Number of Stromal Cells in Three Dimensional Ex Vivo Culture. , 2013, , .		о