Qiang Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9528634/publications.pdf Version: 2024-02-01

OLANIC SLIN

#	Article	IF	CITATIONS
1	Asymmetric Elimination Reaction on Chiral Metal Surfaces. Advanced Materials, 2022, 34, e2104481.	11.1	9
2	Lattice-Directed Selective Synthesis of Acetylenic and Diacetylenic Organometallic Polyynes. Chemistry of Materials, 2022, 34, 1770-1777.	3.2	11
3	Magnetic Interplay between <i>ï€</i> â€Electrons of Openâ€Shell Porphyrins and <i>d</i> â€Electrons of Their Central Transition Metal Ions. Advanced Science, 2022, 9, e2105906.	5.6	9
4	Growth Optimization and Device Integration of Narrowâ€Bandgap Graphene Nanoribbons. Small, 2022, 18, .	5.2	17
5	On-surface synthesis of singly and doubly porphyrin-capped graphene nanoribbon segments. Chemical Science, 2021, 12, 247-252.	3.7	27
6	On-surface synthesis of organocopper metallacycles through activation of inner diacetylene moieties. Chemical Science, 2021, 12, 12806-12811.	3.7	2
7	Exploring Intramolecular Methyl–Methyl Coupling on a Metal Surface for Edge-Extended Graphene Nanoribbons. Organic Materials, 2021, 03, 128-133.	1.0	3
8	Bottomâ€up Fabrication and Atomicâ€Scale Characterization of Triply Linked, Laterally Ï€â€Extended Porphyrin Nanotapes**. Angewandte Chemie, 2021, 133, 16344-16350.	1.6	5
9	Bottomâ€up Fabrication and Atomicâ€Scale Characterization of Triply Linked, Laterally Ï€â€Extended Porphyrin Nanotapes**. Angewandte Chemie - International Edition, 2021, 60, 16208-16214.	7.2	25
10	Evolution of the Topological Energy Band in Graphene Nanoribbons. Journal of Physical Chemistry Letters, 2021, 12, 8679-8684.	2.1	30
11	Optimized graphene electrodes for contacting graphene nanoribbons. Carbon, 2021, 184, 331-339.	5.4	30
12	Lightwave-driven scanning tunnelling spectroscopy of atomically precise graphene nanoribbons. Nature Communications, 2021, 12, 6794.	5.8	29
13	On‣urface Synthesis and Characterization of Triply Fused Porphyrin–Graphene Nanoribbon Hybrids. Angewandte Chemie - International Edition, 2020, 59, 1334-1339.	7.2	47
14	On‣urface Synthesis and Characterization of Triply Fused Porphyrin–Graphene Nanoribbon Hybrids. Angewandte Chemie, 2020, 132, 1350-1355.	1.6	11
15	On-surface synthesis of graphyne nanowires through stepwise reactions. Chemical Communications, 2020, 56, 1685-1688.	2.2	19
16	Inducing Open-Shell Character in Porphyrins through Surface-Assisted Phenalenyl π-Extension. Journal of the American Chemical Society, 2020, 142, 18109-18117.	6.6	41
17	Coupled Spin States in Armchair Graphene Nanoribbons with Asymmetric Zigzag Edge Extensions. Nano Letters, 2020, 20, 6429-6436.	4.5	64
18	On-Surface Synthesis of Unsaturated Carbon Nanostructures with Regularly Fused Pentagon–Heptagon Pairs. Journal of the American Chemical Society, 2020, 142, 10291-10296.	6.6	53

#	Article	IF	CITATIONS
19	Controlled Quantum Dot Formation in Atomically Engineered Graphene Nanoribbon Field-Effect Transistors. ACS Nano, 2020, 14, 5754-5762.	7.3	46
20	Massive Dirac Fermion Behavior in a Low Bandgap Graphene Nanoribbon Near a Topological Phase Boundary. Advanced Materials, 2020, 32, e1906054.	11.1	44
21	On‣urface Synthesis of Cumulene ontaining Polymers via Two‣tep Dehalogenative Homocoupling of Dibromomethyleneâ€Functionalized Tribenzoazulene. Angewandte Chemie, 2020, 132, 13383-13389.	1.6	15
22	Onâ€6urface Synthesis of Cumuleneâ€Containing Polymers via Twoâ€6tep Dehalogenative Homocoupling of Dibromomethyleneâ€Functionalized Tribenzoazulene. Angewandte Chemie - International Edition, 2020, 59, 13281-13287.	7.2	23
23	Reversible Dehalogenation in On‣urface Aryl–Aryl Coupling. Angewandte Chemie, 2020, 132, 14210-14214.	1.6	2
24	Reversible Dehalogenation in On‣urface Aryl–Aryl Coupling. Angewandte Chemie - International Edition, 2020, 59, 14106-14110.	7.2	15
25	Structural, Electronic, and Vibrational Properties of a Two-Dimensional Graphdiyne-like Carbon Nanonetwork Synthesized on Au(111): Implications for the Engineering of sp-sp ² Carbon Nanostructures. ACS Applied Nano Materials, 2020, 3, 12178-12187.	2.4	14
26	THz-STM of Atomically Precise Graphene Nanoribbons. , 2020, , .		0
27	The Stereoselective Formation of trans umulene through Dehalogenative Homocoupling of Alkenyl gem â€Dibromides on Cu(110). ChemCatChem, 2019, 11, 5417-5420.	1.8	4
28	On-surface synthesis and characterization of individual polyacetylene chains. Nature Chemistry, 2019, 11, 924-930.	6.6	67
29	A Universal Length-Dependent Vibrational Mode in Graphene Nanoribbons. ACS Nano, 2019, 13, 13083-13091.	7.3	36
30	On-surface synthesis of polyazulene with 2,6-connectivity. Chemical Communications, 2019, 55, 13466-13469.	2.2	23
31	Scanning tunneling microscopy and Raman spectroscopy of polymeric sp–sp ² carbon atomic wires synthesized on the Au(111) surface. Nanoscale, 2019, 11, 18191-18200.	2.8	24
32	On-surface stereoconvergent synthesis, dimerization and hybridization of organocopper complexes. Science China Chemistry, 2019, 62, 126-132.	4.2	0
33	Direct Formation of Câ^'C Tripleâ€Bonded Structural Motifs by Onâ€Surface Dehalogenative Homocouplings of Tribromomethylâ€Substituted Arenes. Angewandte Chemie - International Edition, 2018, 57, 4035-4038.	7.2	50
34	On‣urface Synthesis of Carbon Nanostructures. Advanced Materials, 2018, 30, e1705630.	11.1	121
35	Direct Formation of Câ^C Tripleâ€Bonded Structural Motifs by Onâ€Surface Dehalogenative Homocouplings of Tribromomethylâ€Substituted Arenes. Angewandte Chemie, 2018, 130, 4099-4102.	1.6	10
36	Direct Formation of C–C Double-Bonded Structural Motifs by On-Surface Dehalogenative Homocoupling of <i>gem</i> -Dibromomethyl Molecules. ACS Nano, 2018, 12, 7959-7966.	7.3	24

#	Article	IF	CITATIONS
37	Nickel Adatoms Induced Tautomeric Dehydrogenation of Thymine Molecules on Au(111). ACS Nano, 2018, 12, 9033-9039.	7.3	14
38	Dehydrogenative and Dehalogenative Homocoupling Reactions of C–X Groups on Metal Surfaces. Advances in Atom and Single Molecule Machines, 2018, , 63-81.	0.0	0
39	CO ₂ Electroreduction Performance of Phthalocyanine Sheet with Mn Dimer: A Theoretical Study. Journal of Physical Chemistry C, 2017, 121, 3963-3969.	1.5	95
40	Self-assembled nanostructures of a di-carbonitrile molecule on copper single-crystal surfaces. RSC Advances, 2017, 7, 1771-1775.	1.7	0
41	Competition between Hydrogen Bonds and Coordination Bonds Steered by the Surface Molecular Coverage. ACS Nano, 2017, 11, 3727-3732.	7.3	60
42	Magnetic two-dimensional organic topological insulator: Au–1,3,5-triethynylbenzene framework. Journal of Chemical Physics, 2017, 147, 104704.	1.2	9
43	On‣urface Formation of Cumulene by Dehalogenative Homocoupling of Alkenyl <i>gem</i> â€Dibromides. Angewandte Chemie - International Edition, 2017, 56, 12165-12169.	7.2	52
44	On‣urface Formation of Cumulene by Dehalogenative Homocoupling of Alkenyl <i>gem</i> â€Dibromides. Angewandte Chemie, 2017, 129, 12333-12337.	1.6	18
45	Self-assembly of melem on Au(111) and Ag(111): the origin of two different hydrogen bonding configurations. Physical Chemistry Chemical Physics, 2017, 19, 18704-18708.	1.3	10
46	Dehydrogenative Homocoupling of Alkyl Chains on Cu(110). Chemistry - A European Journal, 2016, 22, 1918-1921.	1.7	15
47	The stereoselective synthesis of dienes through dehalogenative homocoupling of terminal alkenyl bromides on Cu(110). Chemical Communications, 2016, 52, 6009-6012.	2.2	26
48	Dehalogenative Homocoupling of Terminal Alkynyl Bromides on Au(111): Incorporation of Acetylenic Scaffolding into Surface Nanostructures. ACS Nano, 2016, 10, 7023-7030.	7.3	150
49	Bottom-Up Synthesis of Metalated Carbyne. Journal of the American Chemical Society, 2016, 138, 1106-1109.	6.6	104
50	Single-molecule insight into Wurtz reactions on metal surfaces. Physical Chemistry Chemical Physics, 2016, 18, 2730-2735.	1.3	31
51	Real-Space Evidence of Rare Guanine Tautomer Induced by Water. ACS Nano, 2016, 10, 3776-3782.	7.3	23
52	Solventless Formation of Gâ€Quartet Complexes Based on Alkali and Alkaline Earth Salts on Au(111). ChemPhysChem, 2015, 16, 2099-2105.	1.0	28
53	Controllable Scission and Seamless Stitching of Metal–Organic Clusters by STM Manipulation. Angewandte Chemie - International Edition, 2015, 54, 6526-6530.	7.2	28
54	Dehydrogenative Homocoupling of Terminal Alkenes on Copper Surfaces: A Route to Dienes. Angewandte Chemie - International Edition, 2015, 54, 4549-4552.	7.2	66

#	Article	IF	CITATIONS
55	Formation of polyphenyl chains through hierarchical reactions: Ullmann coupling followed by cross-dehydrogenative coupling. Chemical Communications, 2015, 51, 495-498.	2.2	58
56	On-surface construction of a metal–organic Sierpiński triangle. Chemical Communications, 2015, 51, 14164-14166.	2.2	75
57	Exploring the Self-Assembly Behaviors of an Organic Molecule Functionalized by Terminal Alkyne and Aldehyde Groups on Au(111). Journal of Physical Chemistry C, 2015, 119, 12935-12940.	1.5	6
58	On-Surface Construction of Network Structures by the <i>tert</i> -Butyl-Substituted Organic Molecules. Journal of Physical Chemistry C, 2015, 119, 8155-8159.	1.5	3
59	On-surface formation of two-dimensional polymer via direct C–H activation of metal phthalocyanine. Chemical Communications, 2015, 51, 2836-2839.	2.2	46
60	Surface-assisted cis–trans isomerization of an alkene molecule on Cu(110). Chemical Communications, 2014, 50, 1728-1730.	2.2	13
61	On-surface aryl–aryl coupling via selective C–H activation. Chemical Communications, 2014, 50, 11825-11828.	2.2	106
62	Ni-induced supramolecular structural transformation of cytosine on Au(111): from one-dimensional chains to zero-dimensional clusters. Chemical Communications, 2014, 50, 3242.	2.2	39
63	Formation of a G-Quartet-Fe Complex and Modulation of Electronic and Magnetic Properties of the Fe Center. ACS Nano, 2014, 8, 11799-11805.	7.3	35
64	On-surface synthesis of organometallic complex via metal–alkene interactions. Chemical Communications, 2014, 50, 15924-15927.	2.2	10
65	Tailoring on-surface supramolecular architectures based on adenine directed self-assembly. Chemical Communications, 2014, 50, 356-358.	2.2	5
66	Oxygen-induced self-assembly of quaterphenyl molecules on metal surfaces. Chemical Communications, 2014, 50, 12112-12115.	2.2	8
67	Adsorption-geometry induced transformation of self-assembled nanostructures of an aldehyde molecule on Cu(110). Nanoscale, 2014, 6, 11062-11065.	2.8	3
68	Atomic-Scale Investigation on the Facilitation and Inhibition of Guanine Tautomerization at Au(111) Surface. ACS Nano, 2014, 8, 1804-1808.	7.3	38
69	Regulating the Interactions of Adsorbates on Surfaces by Scanning Tunneling Microscopy Manipulation. ChemPhysChem, 2014, 15, 2657-2663.	1.0	6
70	Steering On-Surface Supramolecular Nanostructures by <i>tert</i> -Butyl Group. Journal of Physical Chemistry C, 2014, 118, 3088-3092.	1.5	11
71	Atomic-scale structures and interactions between the guanine quartet and potassium. Chemical Communications, 2013, 49, 7210.	2.2	26
72	A self-assembled molecular nanostructure for trapping the native adatoms on Cu(110). Chemical Communications, 2013, 49, 1735.	2.2	15

#	Article	IF	CITATIONS
73	On-Surface Formation of One-Dimensional Polyphenylene through Bergman Cyclization. Journal of the American Chemical Society, 2013, 135, 8448-8451.	6.6	154
74	Identification of Molecularâ€Adsorption Geometries and Intermolecular Hydrogenâ€Bonding Configurations by In Situ STM Manipulation. Angewandte Chemie - International Edition, 2013, 52, 7442-7445.	7.2	18
75	A molecular conformational change induced self-assembly: from randomness to order. Chemical Communications, 2013, 49, 5207.	2.2	5
76	Controlling on-surface molecular diffusion behaviors by functionalizing the organic molecules with tert-butyl groups. Applied Physics Letters, 2013, 103, 013103.	1.5	8
77	Molecular heterostructure by fusing graphene nanoribbons of different lengths through a pentagon ring junction. Nano Research, 0, , .	5.8	8