MartÃ-n FañanÃ;s-Mastral

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9528451/publications.pdf Version: 2024-02-01

		145106	190340
73	3,073	33	53
papers	citations	h-index	g-index
117	117	117	2766
11/	11/	11/	2766
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Enantio―and Diastereoselective Copperâ€Catalyzed Allylboration of Alkynes with Allylic <i>gem</i> â€Dichlorides. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
2	Frontispiece: Enantio―and Diastereoselective Copperâ€Catalyzed Allylboration of Alkynes with Allylic <i>gem</i> â€Dichlorides. Angewandte Chemie - International Edition, 2022, 61, .	7.2	0
3	Frontispiz: Enantio―and Diastereoselective Copperâ€Catalyzed Allylboration of Alkynes with Allylic <i>gem</i> â€Dichlorides. Angewandte Chemie, 2022, 134, .	1.6	0
4	Stereoselective Synthesis of Highly Substituted 1,3â€Dienes via "à la carte―Multifunctionalization of Borylated Dendralenes. Angewandte Chemie - International Edition, 2021, 60, 16922-16927.	7.2	16
5	Stereoselective Synthesis of Highly Substituted 1,3â€Dienes via "à la carte―Multifunctionalization of Borylated Dendralenes. Angewandte Chemie, 2021, 133, 17059-17064.	1.6	4
6	Copper-catalyzed protoboration of borylated dendralenes: a regio- and stereoselective access to functionalized 1,3-dienes. Chemical Communications, 2020, 56, 12230-12233.	2.2	14
7	Transmetalation as Key Step in the Diastereo- and Enantioselective Synergistic Cu/Pd-Catalyzed Allylboration of Alkynes with Racemic Allylic Carbonates. Organometallics, 2020, 39, 740-745.	1.1	15
8	Copper-catalyzed <i>O</i> -alkenylation of phosphonates. Beilstein Journal of Organic Chemistry, 2020, 16, 611-615.	1.3	4
9	Copperâ€Catalyzed Enantioselective Allylboration of Alkynes: Synthesis of Highly Versatile Multifunctional Building Blocks. Angewandte Chemie, 2019, 131, 18398-18402.	1.6	34
10	Copper atalyzed Enantioselective Allylboration of Alkynes: Synthesis of Highly Versatile Multifunctional Building Blocks. Angewandte Chemie - International Edition, 2019, 58, 18230-18234.	7.2	44
11	Stereoselective Synthesis of Borylated 1,3â€Đienes by Synergistic Cu/Pd Catalysis. ChemCatChem, 2018, 10, 4817-4820.	1.8	18
12	Synergistic Bimetallic Catalysis for Carboboration of Unsaturated Hydrocarbons. Synthesis, 2018, 50, 3825-3832.	1.2	19
13	Synthesis of Stereodefined Borylated Dendralenes through Copperâ€Catalyzed Allylboration of Alkynes. Angewandte Chemie, 2018, 130, 10093-10097.	1.6	18
14	Synthesis of Stereodefined Borylated Dendralenes through Copper atalyzed Allylboration of Alkynes. Angewandte Chemie - International Edition, 2018, 57, 9945-9949.	7.2	51
15	Cu-catalyzed enantioselective allylic alkylation with organolithium reagents. Nature Protocols, 2017, 12, 493-505.	5.5	7
16	Copper-Catalyzed Arylation with Diaryliodonium Salts. Synthesis, 2017, 49, 1905-1930.	1.2	73
17	Catalytic Asymmetric Synthesis of Butenolides and Butyrolactones. Chemical Reviews, 2017, 117, 10502-10566.	23.0	311
18	[2 + 1] Cycloaddition of Catalytic Ruthenium Vinyl Carbenes: A Stereoselective Controlled Access to (Z)- and (E)-Vinyl Epoxypyrrolidines. ACS Catalysis, 2017, 7, 992-996.	5.5	25

MartÃn FañanÃis-Mastral

#	Article	IF	CITATIONS
19	Copper(I)-Catalyzed Tandem Carboarylation/Cyclization of Alkynyl Phosphonates with Diaryliodonium Salts. ACS Catalysis, 2017, 7, 6104-6109.	5.5	30
20	Synergistic Copper/Palladium Catalysis for the Regio- and Stereoselective Synthesis of Borylated Skipped Dienes. ACS Catalysis, 2017, 7, 5340-5344.	5.5	76
21	Iterative catalyst controlled diastereodivergent synthesis of polypropionates. Organic Chemistry Frontiers, 2016, 3, 1383-1391.	2.3	5
22	Tandem Long Distance Chain-Walking/Cyclization via RuH ₂ (CO)(PPh ₃) ₃ /BrÃ,nsted Acid Catalysis: Entry to Aromatic Oxazaheterocycles. Organic Letters, 2016, 18, 642-645.	2.4	25
23	Chiral Diarylmethanes via Copper-Catalyzed Asymmetric Allylic Arylation with Organolithium Compounds. Organic Letters, 2016, 18, 252-255.	2.4	42
24	<i>t</i> BuLiâ€Mediated Oneâ€Pot Direct Highly Selective Crossâ€Coupling of Two Distinct Aryl Bromides. Chemistry - A European Journal, 2015, 21, 15520-15524.	1.7	14
25	Pd-Catalyzed Cross-Coupling of Aryllithium Reagents with 2-Alkoxy-Substituted Aryl Chlorides: Mild and Efficient Synthesis of 3,3′-Diaryl BINOLs. Organic Letters, 2015, 17, 62-65.	2.4	35
26	Enantioselective Synthesis of Allâ€Carbon Quaternary Stereogenic Centers via Copperâ€Catalyzed Asymmetric Allylic Alkylation of (<i>Z</i>)â€Allyl Bromides with Organolithium Reagents. Chemistry - A European Journal, 2015, 21, 4209-4212.	1.7	23
27	Regio- and Enantioselective Copper-Catalyzed Allylic Alkylation of Ortho-Substituted Cinnamyl Bromides with Grignard Reagents. Journal of Organic Chemistry, 2015, 80, 4981-4984.	1.7	9
28	Catalyst-controlled reverse selectivity in C–C bond formation: NHC-Cu-catalyzed α-selective allylic alkylation with organolithium reagents. Chemical Communications, 2015, 51, 8142-8145.	2.2	10
29	On the Mechanism of Cu-Catalyzed Enantioselective Extended Conjugate Additions: A Structure-Based Approach. ACS Catalysis, 2015, 5, 560-574.	5.5	43
30	Direct catalytic cross-coupling of alkenyllithium compounds. Chemical Science, 2015, 6, 1394-1398.	3.7	64
31	Copper-catalysed α-selective allylic alkylation of heteroaryllithium reagents. Organic and Biomolecular Chemistry, 2014, 12, 9321-9323.	1.5	9
32	Palladium-Catalyzed Anti-Markovnikov Oxidation of Allylic Amides to Protected β-Amino Aldehydes. Journal of the American Chemical Society, 2014, 136, 17302-17307.	6.6	33
33	Palladium-catalysed direct cross-coupling of secondary alkyllithium reagents. Chemical Science, 2014, 5, 1361.	3.7	73
34	Chiral amides via copper-catalysed enantioselective conjugate addition. Organic and Biomolecular Chemistry, 2014, 12, 36-41.	1.5	12
35	Asymmetric synthesis of N,O-heterocycles via enantioselective iridium-catalysed intramolecular allylic amidation. Chemical Science, 2014, 5, 4216-4220.	3.7	27
36	Frontispiece: Palladium-Catalysed Direct Cross-Coupling of Organolithium Reagents with Aryl and Vinyl Triflates. Chemistry - A European Journal, 2014, 20, n/a-n/a.	1.7	0

MartÃn FañanÃis-Mastral

#	Article	IF	CITATIONS
37	Copper-Catalyzed Synthesis of Mixed Alkyl Aryl Phosphonates. Journal of the American Chemical Society, 2014, 136, 9894-9897.	6.6	71
38	Palladium atalysed Direct Cross oupling of Organolithium Reagents with Aryl and Vinyl Triflates. Chemistry - A European Journal, 2014, 20, 13078-13083.	1.7	53
39	A novel catalytic asymmetric route towards skipped dienes with a methyl-substituted central stereogenic carbon. Chemical Communications, 2013, 49, 3309.	2.2	43
40	Synthesis of Optically Active β- or γ-Alkyl-Substituted Alcohols through Copper-Catalyzed Asymmetric Allylic Alkylation with Organolithium Reagents. Journal of Organic Chemistry, 2013, 78, 8274-8280.	1.7	18
41	Catalytic Direct Cross-Coupling of Organolithium Compounds with Aryl Chlorides. Organic Letters, 2013, 15, 5114-5117.	2.4	66
42	Asymmetric Conjugate Addition of Grignard Reagents to Pyranones. Organic Letters, 2013, 15, 286-289.	2.4	35
43	Diversityâ€Oriented Enantioselective Synthesis of Highly Functionalized Cyclic and Bicyclic Alcohols. Chemistry - A European Journal, 2013, 19, 761-770.	1.7	13
44	Copper-Catalyzed Enantioselective Allyl–Allyl Cross-Coupling. Journal of the American Chemical Society, 2013, 135, 2140-2143.	6.6	80
45	Cu atalyzed Asymmetric Allylic Alkylation of Phosphonates and Phosphine Oxides with Grignard Reagents. Chemistry - A European Journal, 2013, 19, 5432-5441.	1.7	30
46	Palladium atalyzed Selective Anti <i>â€</i> Markovnikov Oxidation of Allylic Esters. Angewandte Chemie - International Edition, 2013, 52, 5561-5565.	7.2	38
47	Catalytic asymmetric conjugate addition of Grignard reagents to chromones. Chemical Communications, 2013, 49, 5933.	2.2	57
48	Enantioselective synthesis of almorexant via iridium-catalysed intramolecular allylic amidation. Organic and Biomolecular Chemistry, 2013, 11, 4521.	1.5	22
49	Direct catalytic cross-coupling of organolithium compounds. Nature Chemistry, 2013, 5, 667-672.	6.6	188
50	Hindered Aryllithium Reagents as Partners in Palladiumâ€Catalyzed Crossâ€Coupling: Synthesis of Tri―and Tetraâ€ <i>ortho</i> â€Substituted Biaryls under Ambient Conditions. Angewandte Chemie - International Edition, 2013, 52, 13329-13333.	7.2	63
51	Synthetic Approaches to Highly Functional β-Carboline Building Blocks via Allylic Amidation. Synthesis, 2012, 44, 409-416.	1.2	6
52	Copper-catalyzed asymmetric ring opening of oxabicyclic alkenes with organolithium reagents. Chemical Communications, 2012, 48, 1748.	2.2	68
53	<i>Z-</i> Selective Copper-Catalyzed Asymmetric Allylic Alkylation with Grignard Reagents. Journal of the American Chemical Society, 2012, 134, 4108-4111.	6.6	54
54	Asymmetric Allylic Alkylation of Acyclic Allylic Ethers with Organolithium Reagents. Chemistry - A European Journal, 2012, 18, 11880-11883.	1.7	39

#	Article	IF	CITATIONS
55	Oxidation of Alkenes with H ₂ O ₂ by an in-Situ Prepared Mn(II)/Pyridine-2-carboxylic Acid Catalyst and the Role of Ketones in Activating H ₂ O ₂ . ACS Catalysis, 2012, 2, 1087-1096.	5.5	43
56	Highly Enantioselective Synthesis of 3‣ubstituted Furanones by Palladiumâ€Catalyzed Kinetic Resolution of Unsymmetrical Allyl Acetates. Angewandte Chemie - International Edition, 2012, 51, 3168-3173.	7.2	57
57	Enantioselective Synthesis of Tertiary and Quaternary Stereogenic Centers: Copper/Phosphoramiditeâ€Catalyzed Allylic Alkylation with Organolithium Reagents. Angewandte Chemie - International Edition, 2012, 51, 1922-1925.	7.2	72
58	Stereoselective synthesis of syn and anti 1,2-hydroxyalkyl moieties by Cu-catalyzed asymmetric allylic alkylation. Chemical Communications, 2011, 47, 5843.	2.2	29
59	Catalytic Enantioselective Synthesis of Naturally Occurring Butenolides via <i>Hetero</i> Allylic Alkylation and Ring Closing Metathesis. Organic Letters, 2011, 13, 948-951.	2.4	79
60	Catalytic asymmetric carbon–carbon bond formation via allylic alkylations with organolithium compounds. Nature Chemistry, 2011, 3, 377-381.	6.6	101
61	[1,5]â€Hydride Transfer/Cyclization of <i>ortho</i> â€Amino Alkynyl Fischer Carbene Complexes: A Useful Tool for the Synthesis of Quinoline Derivatives. European Journal of Organic Chemistry, 2011, 2011, 1961-1967.	1.2	28
62	Iridium atalyzed Asymmetric Intramolecular Allylic Amidation: Enantioselective Synthesis of Chiral Tetrahydroisoquinolines and Saturated Nitrogen Heterocycles. Angewandte Chemie - International Edition, 2011, 50, 688-691.	7.2	70
63	Copper-Catalyzed Addition of Grignards to Allylic α-Haloacetates. Synfacts, 2010, 2010, 1389-1389.	0.0	0
64	Copper-Catalyzed Regio- and Enantioselective Synthesis of Chiral Enol Acetates and β-Substituted Aldehydes. Journal of the American Chemical Society, 2010, 132, 13152-13153.	6.6	46
65	Carbene Transfer Reactions from Chromium(0) to Gold(I): Synthesis and Reactivity of New Fischer-Type Gold(I) Alkenyl Carbene Complexes. Organometallics, 2009, 28, 666-668.	1.1	83
66	Diastereoselective Synthesis of Threeâ€, Fiveâ€, Sixâ€, and Sevenâ€Membered Rings from Fischer Carbene Complexes and 4â€Unsubstituted 1â€Aminoâ€1,3â€Dienes. Chemistry - A European Journal, 2008, 14, 325-332.	1.7	14
67	Cĩ£¿H Insertion Processes on Stabilized Indolyl and <i>ortho</i> â€Aminophenyl Fischer Carbene Complexes: Synthesis of Azepino[3,2,1â€ <i>hi</i>] indole, Benzazepine and Indole Derivatives. Chemistry - A European Journal, 2008, 14, 7508-7512.	1.7	19
68	[1,5]â€Hydride Transfer/Cyclizations on Alkynyl Fischer Carbene Complexes: Synthesis of 1,2â€Đihydroquinolinyl Carbene Complexes and Cascade Reactions. Angewandte Chemie - International Edition, 2008, 47, 6594-6597.	7.2	107
69	Cascade Reactions of Dialkynyl Fischer Carbene Complexes Involving Intramolecular Alkyne Insertions Oriented to the Synthesis of Functionalized Polycycles. Organometallics, 2008, 27, 3593-3600.	1.1	13
70	Extended Dötzâ€Like Cyclization Reactions Towards the Synthesis of Eightâ€Membered Ringâ€Containing Polycycles: Scope and Theoretical Studies. Chemistry - A European Journal, 2007, 13, 7682-7700.	1.7	19
71	A New Synthesis of Allyl Sulfoxides via Nucleophilic Addition of Sulfinyl Carbanions to Group 6 Fischer Carbene Complexes ChemInform, 2005, 36, no.	0.1	0
72	A New Synthesis of Allyl Sulfoxides via Nucleophilic Addition of Sulfinyl Carbanions to Group 6 Fischer Carbene Complexes. Organic Letters, 2005, 7, 1235-1237.	2.4	10

#	Article	IF	CITATIONS
73	Enantio―and Diastereoselective Copperâ€Catalyzed Allylboration of Alkynes with Allylic <i>gem</i> â€Dichlorides. Angewandte Chemie, 0, , .	1.6	1