List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9528231/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microbial protection favors parasite tolerance and alters host-parasite coevolutionary dynamics. Current Biology, 2022, 32, 1593-1598.e3.	1.8	13
2	Monitoring Chromatin Regulation in Planarians Using Chromatin Immunoprecipitation Followed by Sequencing (ChIP-seq). Methods in Molecular Biology, 2022, 2450, 529-547.	0.4	0
3	Ongoing repair of migration-coupled DNA damage allows planarian adult stem cells to reach wound sites. ELife, 2021, 10, .	2.8	15
4	ACME dissociation: a versatile cell fixation-dissociation method for single-cell transcriptomics. Genome Biology, 2021, 22, 89.	3.8	39
5	Regenerative responses following DNA damage: β-catenin mediates head regrowth in the planarian Schmidtea mediterranea. Journal of Cell Science, 2020, 133, .	1.2	3
6	Downregulation of mTOR Signaling Increases Stem Cell Population Telomere Length during Starvation of Immortal Planarians. Stem Cell Reports, 2019, 13, 405-418.	2.3	18
7	Planarian flatworms as a new model system for understanding the epigenetic regulation of stem cell pluripotency and differentiation. Seminars in Cell and Developmental Biology, 2019, 87, 79-94.	2.3	24
8	EvoRegen in animals: Time to uncover deep conservation or convergence of adult stem cell evolution and regenerative processes. Developmental Biology, 2018, 433, 118-131.	0.9	66
9	Organ specific gene expression in the regenerating tail of Macrostomum lignano. Developmental Biology, 2018, 433, 448-460.	0.9	28
10	The abrogation of condensin function provides independent evidence for defining the self-renewing population of pluripotent stem cells. Developmental Biology, 2018, 433, 218-226.	0.9	13
11	Conservation of epigenetic regulation by the MLL3/4 tumour suppressor in planarian pluripotent stem cells. Nature Communications, 2018, 9, 3633.	5.8	29
12	Epigenetic analyses of planarian stem cells demonstrate conservation of bivalent histone modifications in animal stem cells. Genome Research, 2018, 28, 1543-1554.	2.4	32
13	The protein subunit of telomerase displays patterns of dynamic evolution and conservation across different metazoan taxa. BMC Evolutionary Biology, 2017, 17, 107.	3.2	22
14	Comparative genomic analysis of innate immunity reveals novel and conserved components in crustacean food crop species. BMC Genomics, 2017, 18, 389.	1.2	37
15	Nonâ€canonical aging model systems and why we need them. EMBO Journal, 2017, 36, 959-963.	3.5	34
16	An X-ray shielded irradiation assay reveals EMT transcription factors control pluripotent adult stem cell migration <i>in vivo</i> in planarians. Development (Cambridge), 2017, 144, 3440-3453.	1.2	49
17	Secrets from immortal worms: What can we learn about biological ageing from the planarian model system?. Seminars in Cell and Developmental Biology, 2017, 70, 108-121.	2.3	35
18	Efficient transgenesis and annotated genome sequence of the regenerative flatworm model Macrostomum lignano. Nature Communications, 2017, 8, 2120.	5.8	60

#	Article	IF	CITATIONS
19	Argonaute Utilization for miRNA Silencing Is Determined by Phosphorylation-Dependent Recruitment of LIM-Domain-Containing Proteins. Cell Reports, 2017, 20, 173-187.	2.9	57
20	Feedback control in planarian stem cell systems. BMC Systems Biology, 2016, 10, 17.	3.0	15
21	No evidence for extensive horizontal gene transfer in the genome of the tardigrade <i>Hypsibius dujardini</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5053-5058.	3.3	214
22	The genome of the crustacean Parhyale hawaiensis, a model for animal development, regeneration, immunity and lignocellulose digestion. ELife, 2016, 5, .	2.8	130
23	JNK Signaling is necessary for a Wnt and stem cell dependent regeneration program. Development (Cambridge), 2015, 142, 2413-24.	1.2	27
24	Genes involved in the induction of liver growth by peroxisome proliferators. Toxicology Research, 2014, 3, 315-323.	0.9	1
25	Characterisation of the horse transcriptome from immunologically active tissues. PeerJ, 2014, 2, e382.	0.9	6
26	The planarian regeneration transcriptome reveals a shared but temporally shifted regulatory program between opposing head and tail scenarios. BMC Genomics, 2013, 14, 797.	1.2	50
27	What is it about 'eye of newt'?. Genome Biology, 2013, 14, 106.	13.9	3
28	Planarian MBD2/3 is required for adult stem cell pluripotency independently of DNA methylation. Developmental Biology, 2013, 384, 141-153.	0.9	35
29	The CCR4-NOT Complex Mediates Deadenylation and Degradation of Stem Cell mRNAs and Promotes Planarian Stem Cell Differentiation. PLoS Genetics, 2013, 9, e1004003.	1.5	29
30	<i>PBX/extradenticle</i> is required to re-establish axial structures and polarity during planarian regeneration. Development (Cambridge), 2013, 140, 730-739.	1.2	53
31	The miR-30 MicroRNA Family Targets smoothened to Regulate Hedgehog Signalling in Zebrafish Early Muscle Development. PLoS ONE, 2013, 8, e65170.	1.1	30
32	Fine Mapping of the Pond Snail Left-Right Asymmetry (Chirality) Locus Using RAD-Seq and Fibre-FISH. PLoS ONE, 2013, 8, e71067.	1.1	26
33	Uncovering the Genome-Wide Transcriptional Responses of the Filamentous Fungus Aspergillus niger to Lignocellulose Using RNA Sequencing. PLoS Genetics, 2012, 8, e1002875.	1.5	157
34	SMG-1 and mTORC1 Act Antagonistically to Regulate Response to Injury and Growth in Planarians. PLoS Genetics, 2012, 8, e1002619.	1.5	82
35	Telomere maintenance and telomerase activity are differentially regulated in asexual and sexual worms. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4209-4214.	3.3	90
36	Defining the molecular profile of planarian pluripotent stem cells using a combinatorial RNA-seq, RNA interference and irradiation approach. Genome Biology, 2012, 13, R19.	13.9	135

#	Article	IF	CITATIONS
37	Characterisation of retroviruses in the horse genome and their transcriptional activity via transcriptome sequencing. Virology, 2012, 433, 55-63.	1.1	14
38	A lack of commitment for over 500 million years: conserved animal stem cell pluripotency. EMBO Journal, 2012, 31, 2747-2749.	3.5	5
39	FACS Analysis of the Planarian Stem Cell Compartment as a Tool to Understand Regenerative Mechanisms. Methods in Molecular Biology, 2012, 916, 167-179.	0.4	21
40	High Through-Put Sequencing of the Parhyale hawaiensis mRNAs and microRNAs to Aid Comparative Developmental Studies. PLoS ONE, 2012, 7, e33784.	1.1	35
41	Decreased neoblast progeny and increased cell death during starvation-induced planarian degrowth. International Journal of Developmental Biology, 2012, 56, 83-91.	0.3	56
42	Planarian stem cells: a simple paradigm for regeneration. Trends in Cell Biology, 2011, 21, 304-311.	3.6	139
43	Early planarian brain regeneration is independent of blastema polarity mediated by the Wnt/β-catenin pathway. Developmental Biology, 2011, 358, 68-78.	0.9	62
44	Combining Classical and Molecular Approaches Elaborates on the Complexity of Mechanisms Underpinning Anterior Regeneration. PLoS ONE, 2011, 6, e27927.	1.1	17
45	A Dual Platform Approach to Transcript Discovery for the Planarian Schmidtea Mediterranea to Establish RNAseq for Stem Cell and Regeneration Biology. PLoS ONE, 2010, 5, e15617.	1.1	61
46	The Nematode Story: Hox Gene Loss and Rapid Evolution. Advances in Experimental Medicine and Biology, 2010, 689, 101-110.	0.8	14
47	The TALE Class Homeobox Gene Smed-prep Defines the Anterior Compartment for Head Regeneration. PLoS Genetics, 2010, 6, e1000915.	1.5	74
48	Diverse miRNA spatial expression patterns suggest important roles in homeostasis and regeneration in planarians. International Journal of Developmental Biology, 2009, 53, 493-505.	0.3	45
49	Piggybacking schistosome invasion: similarities are only skin deep. Trends in Parasitology, 2008, 24, 153-156.	1.5	3
50	<i>Gtdap-1</i> and the Role of Autophagy During Planarian Regeneration and Starvation. Autophagy, 2007, 3, 640-642.	4.3	18
51	<i>Gtdap-1</i> promotes autophagy and is required for planarian remodeling during regeneration and starvation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13373-13378.	3.3	81
52	Evidence for a microRNA expansion in the bilaterian ancestor. Development Genes and Evolution, 2007, 217, 73-77.	0.4	124
53	Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18017-18022.	3.3	252
54	Functional genomics for parasitic nematodes and platyhelminths. Trends in Parasitology, 2004, 20, 178-184.	1.5	26

#	Article	IF	CITATIONS
55	Hox Gene Loss during Dynamic Evolution of the Nematode Cluster. Current Biology, 2003, 13, 37-40.	1.8	142
56	Use of RNA interference to investigate gene function in the human filarial nematode parasite Brugia malayi. Molecular and Biochemical Parasitology, 2003, 129, 41-51.	0.5	145
57	Hox gene evolution in nematodes: novelty conserved. Current Opinion in Genetics and Development, 2003, 13, 593-598.	1.5	90
58	Hybridization to High-Density Filter Arrays of a <i>Brugia malayi</i> BAC Library with Biotinylated Oligonucleotides and PCR Products. BioTechniques, 2001, 30, 1216-1224.	0.8	8
59	Medical significance of <i>Caenorhabditis elegans</i> . Annals of Medicine, 2000, 32, 23-30.	1.5	46
60	Learning impairments induced by glutamate blockade using dizocilpine (MK-801) in monkeys. British Journal of Pharmacology, 1998, 125, 1013-1018.	2.7	46