Sharon Rozovsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9527975/publications.pdf

Version: 2024-02-01

257450 276875 50 1,822 24 41 citations g-index h-index papers 53 53 53 2095 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Applying selenocysteine-mediated expressed protein ligation to prepare the membrane enzyme selenoprotein S. Methods in Enzymology, 2022, 662, 159-185.	1.0	2
2	77Se-13C based dipolar correlation experiments to map selenium sites in microcrystalline proteins. Journal of Biomolecular NMR, 2022, 76, 29.	2.8	0
3	Selenoprotein S Binds to the SARSâ€CoVâ€2 Replication Complex. FASEB Journal, 2022, 36, .	0.5	O
4	Interactions of the intrinsically disordered selenoprotein S with a small GTPase regulator. FASEB Journal, 2022, 36, .	0.5	0
5	Purification and Characterization of a Stable, Membrane-Associated Peptidoglycan Responsive Adenylate Cyclase LRR Domain from Human Commensal <i>Candida albicans</i> . Biochemistry, 2022, 61, 2856-2860.	2.5	2
6	Methods Re-engineering the Site-Specific Incorporation of Selenocysteine Into Proteins. , 2021, , 757-765.		1
7	The role of human selenoprotein S in SARSâ€CoVâ€2 replication. FASEB Journal, 2021, 35, .	0.5	O
8	Upregulated ethanolamine phospholipid synthesis via selenoprotein I is required for effective metabolic reprogramming during T cell activation. Molecular Metabolism, 2021, 47, 101170.	6.5	19
9	Genetic Incorporation of ϵâ€ <i>N</i> â€Benzoyllysine by Engineering <i>Methanomethylophilus alvus</i> Pyrrolysylâ€ŧRNA Synthetase. ChemBioChem, 2021, 22, 2530-2534.	2.6	14
10	A Genetically Encoded Fluorosulfonyloxybenzoyl- <scp>l</scp> -lysine for Expansive Covalent Bonding of Proteins via SuFEx Chemistry. Journal of the American Chemical Society, 2021, 143, 10341-10351.	13.7	50
11	Iron Oxidation by a Fused Cytochrome-Porin Common to Diverse Iron-Oxidizing Bacteria. MBio, 2021, 12, e0107421.	4.1	34
12	Efficient Generation of Hydrazides in Proteins by RadA Split Intein. ChemBioChem, 2020, 21, 346-352.	2.6	4
13	⁷⁷ Se NMR Probes the Protein Environment of Selenomethionine. Journal of Physical Chemistry B, 2020, 124, 601-616.	2.6	6
14	Genetically Encoded Quinone Methides Enabling Rapid, Site-Specific, and Photocontrolled Protein Modification with Amine Reagents. Journal of the American Chemical Society, 2020, 142, 17057-17068.	13.7	25
15	Photocaged Quinone Methide Crosslinkers for Lightâ€Controlled Chemical Crosslinking of Protein–Protein and Protein–DNA Complexes. Angewandte Chemie - International Edition, 2019, 58, 18839-18843.	13.8	28
16	Photocaged Quinone Methide Crosslinkers for Lightâ€Controlled Chemical Crosslinking of Protein–Protein and Protein–DNA Complexes. Angewandte Chemie, 2019, 131, 19015-19019.	2.0	7
17	Dual-Reactivity <i>trans</i> -Cyclooctenol Probes for Sulfenylation in Live Cells Enable Temporal Control via Bioorthogonal Quenching. Journal of the American Chemical Society, 2019, 141, 10932-10937.	13.7	32
18	Genetically Encoding Photocaged Quinone Methide to Multitarget Protein Residues Covalently in Vivo. Journal of the American Chemical Society, 2019, 141, 9458-9462.	13.7	60

#	Article	IF	CITATIONS
19	Synthesis and semisynthesis of selenopeptides and selenoproteins. Current Opinion in Chemical Biology, 2018, 46, 41-47.	6.1	28
20	Preparation of Selenocysteine-Containing Forms of Human SELENOK and SELENOS. Methods in Molecular Biology, 2018, 1661, 241-263.	0.9	5
21	Selenocysteine-Mediated Expressed Protein Ligation of SELENOM. Methods in Molecular Biology, 2018, 1661, 265-283.	0.9	11
22	Selenoprotein K Increases Efficiency of DHHC6 Catalyzed Protein Palmitoylation by Stabilizing the Acyl-DHHC6 Intermediate. Antioxidants, 2018, 7, 4.	5.1	27
23	Site-Specific Incorporation of Selenocysteine Using an Expanded Genetic Code and Palladium-Mediated Chemical Deprotection. Journal of the American Chemical Society, 2018, 140, 8807-8816.	13.7	52
24	Building and Breaking Bonds via a Compact Sâ€Propargylâ€Cysteine to Chemically Control Enzymes and Modify Proteins. Angewandte Chemie, 2018, 130, 12884-12888.	2.0	1
25	Building and Breaking Bonds via a Compact Sâ€Propargylâ€Cysteine to Chemically Control Enzymes and Modify Proteins. Angewandte Chemie - International Edition, 2018, 57, 12702-12706.	13.8	10
26	Quorum Sensing Regulators Are Required for Metabolic Fitness in Vibrio parahaemolyticus. Infection and Immunity, 2017, 85, .	2.2	30
27	Utilizing Selenocysteine for Expressed Protein Ligation and Bioconjugations. Journal of the American Chemical Society, 2017, 139, 3430-3437.	13.7	58
28	Engineering multi-functional bacterial outer membrane vesicles as modular nanodevices for biosensing and bioimaging. Chemical Communications, 2017, 53, 7569-7572.	4.1	45
29	Quantification of Membrane Protein-Detergent Complex Interactions. Journal of Physical Chemistry B, 2017, 121, 10228-10241.	2.6	20
30	Trifluoroselenomethionine: A New Unnatural Amino Acid. ChemBioChem, 2016, 17, 1738-1751.	2.6	27
31	Selenoprotein Gene Nomenclature. Journal of Biological Chemistry, 2016, 291, 24036-24040.	3.4	207
32	77Se NMR Spectroscopy of Selenoproteins. , 2016, , 187-198.		3
33	Pathogenicity Island Cross Talk Mediated by Recombination Directionality Factors Facilitates Excision from the Chromosome. Journal of Bacteriology, 2016, 198, 766-776.	2.2	22
34	⁷⁷ Se Chemical Shift Tensor of <scp>I</scp> -Selenocystine: Experimental NMR Measurements and Quantum Chemical Investigations of Structural Effects. Journal of Physical Chemistry B, 2015, 119, 3643-3650.	2.6	13
35	Membrane-Bound Selenoproteins. Antioxidants and Redox Signaling, 2015, 23, 795-813.	5.4	53
36	Redox active motifs in selenoproteins. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6976-6981.	7.1	54

#	Article	IF	Citations
37	Selenoprotein K form an intermolecular diselenide bond with unusually high redox potential. FEBS Letters, 2014, 588, 3311-3321.	2.8	42
38	Site-specific insertion of selenium into the redox-active disulfide of the flavoprotein augmenter of liver regeneration. Archives of Biochemistry and Biophysics, 2014, 548, 60-65.	3.0	6
39	77Se Enrichment of Proteins Expands the Biological NMR Toolbox. Journal of Molecular Biology, 2013, 425, 222-231.	4.2	32
40	Contribution of Selenocysteine to the Peroxidase Activity of Selenoprotein S. Biochemistry, 2013, 52, 5514-5516.	2.5	37
41	77Se NMR Spectroscopy of Selenoproteins. ACS Symposium Series, 2013, , 127-142.	0.5	10
42	The Intrinsically Disordered Membrane Protein Selenoprotein S Is a Reductase <i>in Vitro</i> Biochemistry, 2013, 52, 3051-3061.	2.5	50
43	Expression and purification of the membrane enzyme selenoprotein K. Protein Expression and Purification, 2012, 86, 27-34.	1.3	24
44	Single Molecule Kinetics of ENTH Binding to Lipid Membranes. Journal of Physical Chemistry B, 2012, 116, 5122-5131.	2.6	20
45	Substrate product equilibrium on a reversible enzyme, triosephosphate isomerase. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2080-2085.	7.1	43
46	Formation and Spatio-Temporal Evolution of Periodic Structures in Lipid Bilayers. Journal of the American Chemical Society, 2005, 127, 36-37.	13.7	90
47	Active Site Loop Motion in Triosephosphate Isomerase: T-Jump Relaxation Spectroscopy of Thermal Activationâ€. Biochemistry, 2003, 42, 2941-2951.	2.5	91
48	Optimal alignment for enzymatic proton transfer: Structure of the Michaelis complex of triosephosphate isomerase at 1.2-A resolution. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 50-55.	7.1	136
49	The time scale of the catalytic loop motion in triosephosphate isomerase11Edited by P. E. Wright. Journal of Molecular Biology, 2001, 310, 259-270.	4.2	115
50	Solution-state NMR investigations of triosephosphate isomerase active site loop motion: ligand release in relation to active site loop dynamics11Edited by P. E. Wright. Journal of Molecular Biology, 2001, 310, 271-280.	4.2	170