Vincenzo Cerullo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9527628/publications.pdf

Version: 2024-02-01

81839 98753 5,331 137 39 67 citations g-index h-index papers 149 149 149 5213 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Neonatal Fc receptor-targeted lignin-encapsulated porous silicon nanoparticles for enhanced cellular interactions and insulin permeation across the intestinal epithelium. Bioactive Materials, 2022, 9, 299-315.	8.6	23
2	Computationally prioritized drugs inhibit SARS-CoV-2 infection and syncytia formation. Briefings in Bioinformatics, 2022, 23, .	3.2	17
3	Oncolytic ImmunoViroTherapy: A long history of crosstalk between viruses and immune system for cancer treatment., 2022, 236, 108103.		20
4	Oncolytic viruses for antigen delivery. , 2022, , 1-19.		0
5	A novel immunopeptidomic-based pipeline for the generation of personalized oncolytic cancer vaccines. ELife, 2022, 11 , .	2.8	21
6	Peptides-Coated Oncolytic Vaccines for Cancer Personalized Medicine. Frontiers in Immunology, 2022, 13, 826164.	2.2	8
7	A novel cancer vaccine for melanoma based on an approved vaccine against measles, mumps, and rubella. Molecular Therapy - Oncolytics, 2022, 25, 137-145.	2.0	5
8	Pathogens: Our Allies against Cancer?. Molecular Therapy, 2021, 29, 10-12.	3.7	9
9	Viral Nanoparticles: Cancer Vaccines and Immune Modulators. Advances in Experimental Medicine and Biology, 2021, 1295, 317-325.	0.8	2
10	Oncolytic Adenoviruses for Cancer Therapy. International Journal of Molecular Sciences, 2021, 22, 2517.	1.8	18
11	GAMER-Ad: a novel and rapid method for generating recombinant adenoviruses. Molecular Therapy - Methods and Clinical Development, 2021, 20, 625-634.	1.8	8
12	Characterization of a novel OX40 ligand and CD40 ligand-expressing oncolytic adenovirus used in the PeptiCRAd cancer vaccine platform. Molecular Therapy - Oncolytics, 2021, 20, 459-469.	2.0	27
13	Patient-Derived Organoids for Precision Cancer Immunotherapy. Cancer Research, 2021, 81, 3149-3155.	0.4	46
14	Surfaceome and Exoproteome Dynamics in Dual-Species Pseudomonas aeruginosa and Staphylococcus aureus Biofilms. Frontiers in Microbiology, 2021, 12, 672975.	1.5	11
15	Viral Molecular Mimicry Influences the Antitumor Immune Response in Murine and Human Melanoma. Cancer Immunology Research, 2021, 9, 981-993.	1.6	22
16	Abstract 1488: Viral molecular mimicry influences the antitumor immune response in murine and human melanoma. , $2021, \ldots$		0
17	Therapeutic Cancer Vaccination with Immunopeptidomics-Discovered Antigens Confers Protective Antitumor Efficacy. Cancers, 2021, 13, 3408.	1.7	16
18	Abstract 1897: PeptiCHIP: A novel microfluidic-based chip platform for tumor antigen landscape identification. , 2021, , .		0

#	Article	IF	Citations
19	Abstract 1867: Characterization in patient derived tumor organoids of novel oncolytic adenoviruses expressing enhanced cross-hybrid IgGA Fc PD-L1 inhibitors., 2021,,.		0
20	Novel personalized cancer vaccine platform based on Bacillus Calmette-Guèrin., 2021, 9, e002707.		12
21	Novel oncolytic adenovirus expressing enhanced cross-hybrid IgGA Fc PD-L1 inhibitor activates multiple immune effector populations leading to enhanced tumor killing in vitro, in vivo and with patient-derived tumor organoids., 2021, 9, e003000.		27
22	\hat{I}^2 2-Integrin Adhesion Regulates Dendritic Cell Epigenetic and Transcriptional Landscapes to Restrict Dendritic Cell Maturation and Tumor Rejection. Cancer Immunology Research, 2021, 9, 1354-1369.	1.6	10
23	PeptiCHIP: A Microfluidic Platform for Tumor Antigen Landscape Identification. ACS Nano, 2021, 15, 15992-16010.	7.3	17
24	Dual-peptide functionalized acetalated dextran-based nanoparticles for sequential targeting of macrophages during myocardial infarction. Nanoscale, 2020, 12, 2350-2358.	2.8	42
25	Design and application of oncolytic viruses for cancer immunotherapy. Current Opinion in Biotechnology, 2020, 65, 25-36.	3.3	84
26	Circulating microRNAs as biomarkers for early diagnosis of cutaneous melanoma. Expert Review of Molecular Diagnostics, 2020, 20, 19-30.	1.5	13
27	Influence of Cell Membrane Wrapping on the Cellâ^'Porous Silicon Nanoparticle Interactions. Advanced Healthcare Materials, 2020, 9, e2000529.	3.9	11
28	Tumor Suppressor Role of hsa-miR-193a-3p and -5p in Cutaneous Melanoma. International Journal of Molecular Sciences, 2020, 21, 6183.	1.8	16
29	Exploiting Preexisting Immunity to Enhance Oncolytic Cancer Immunotherapy. Cancer Research, 2020, 80, 2575-2585.	0.4	39
30	Uncovering the Tumor Antigen Landscape: What to Know about the Discovery Process. Cancers, 2020, 12, 1660.	1.7	29
31	Extracellular vesicles provide a capsidâ€free vector for oncolytic adenoviral DNA delivery. Journal of Extracellular Vesicles, 2020, 9, 1747206.	5.5	27
32	Oncolytic adenovirus drives specific immune response generated by a poly-epitope pDNA vaccine encoding melanoma neoantigens into the tumor site., 2019, 7, 174.		13
33	Harnessing therapeutic viruses as a delivery vehicle for RNA-based therapy. PLoS ONE, 2019, 14, e0224072.	1.1	8
34	Optimization of Early Steps in Oncolytic Adenovirus ONCOS-401 Production in T-175 and HYPERFlasks. International Journal of Molecular Sciences, 2019, 20, 621.	1.8	16
35	Biohybrid Vaccines for Improved Treatment of Aggressive Melanoma with Checkpoint Inhibitor. ACS Nano, 2019, 13, 6477-6490.	7. 3	36
36	Helper-dependent adenovirus-mediated gene transfer of a secreted LDL receptor/transferrin chimeric protein reduces aortic atherosclerosis in LDL receptor-deficient mice. Gene Therapy, 2019, 26, 121-130.	2.3	9

#	Article	IF	CITATIONS
37	Artificially cloaked viral nanovaccine for cancer immunotherapy. Nature Communications, 2019, 10, 5747.	5.8	86
38	Extracellular vesicles enhance the targeted delivery of immunogenic oncolytic adenovirus and paclitaxel in immunocompetent mice. Journal of Controlled Release, 2019, 294, 165-175.	4.8	93
39	Peptide Nucleic Acid-Functionalized Adenoviral Vectors Targeting G-Quadruplexes in the P1 Promoter of Bcl-2 Proto-Oncogene: A New Tool for Gene Modulation in Anticancer Therapy. Bioconjugate Chemistry, 2019, 30, 572-582.	1.8	25
40	Abstract B123: Local treatment with PeptiCRAd-1, a novel cancer immunotherapy approach, mediates a systemic antitumour CD8+ T-cell response and infiltration of CD8+ and CD4+ T-cells into distant untreated tumors in a clinically relevant humanized mouse melanoma model., 2019,,.		O
41	Oncolytic vaccines increase the response to PD-L1 blockade in immunogenic and poorly immunogenic tumors. Oncolmmunology, 2018, 7, e1457596.	2.1	31
42	Antitumorâ€specific Tâ€cell responses induced by oncolytic adenovirus ONCOSâ€102 (AdV5/3â€D24â€GMâ€CSF peritoneal mesothelioma mouse model. Journal of Medical Virology, 2018, 90, 1669-1673.	5) in 2.5	36
43	Personalized Cancer Vaccine Platform for Clinically Relevant Oncolytic Enveloped Viruses. Molecular Therapy, 2018, 26, 2315-2325.	3.7	41
44	Cancer-Targeted Oncolytic Adenoviruses for Modulation of the Immune System. Current Cancer Drug Targets, 2018, 18, 124-138.	0.8	13
45	Antitumor effect of oncolytic virus and paclitaxel encapsulated in extracellular vesicles for lung cancer treatment. Journal of Controlled Release, 2018, 283, 223-234.	4.8	95
46	A novel (i) in silico (i) framework to improve MHC-l epitopes and break the tolerance to melanoma. Oncolmmunology, 2017, 6, e1319028.	2.1	25
47	Metastatic state of parent cells influences the uptake and functionality of prostate cancer cellâ€derived extracellular vesicles. Journal of Extracellular Vesicles, 2017, 6, 1354645.	5.5	29
48	Homology between cancer and viral epitopes as criteria to design improved cancer vaccines. Annals of Oncology, 2017, 28, xi18.	0.6	0
49	Toxicological and bio-distribution profile of a GM-CSF-expressing, double-targeted, chimeric oncolytic adenovirus ONCOS-102 – Support for clinical studies on advanced cancer treatment. PLoS ONE, 2017, 12, e0182715.	1.1	34
50	Improving the efficacy of PDL1 blockade by combination with oncolytic vaccines. Annals of Oncology, 2016, 27, viii2.	0.6	0
51	Synergistic antiâ€tumor efficacy of immunogenic adenovirus ONCOSâ€102 (Ad5/3â€D24â€GMâ€CSF) and stand of care chemotherapy in preclinical mesothelioma model. International Journal of Cancer, 2016, 139, 1883-1893.	ard 2.3	46
52	659. Oncolytic Adenovirus Loaded with Bioactive Modified Peptide as a Novel Approach to Treat Cancer. Molecular Therapy, 2016, 24, S261.	3.7	0
53	408. Oncolytic Vaccines in Combination with PD-L1 Blockade for the Treatment of Melanoma. Molecular Therapy, 2016, 24, S161-S162.	3.7	1
54	642. Oncolytic Vaccines with Modified Tumor Epitopes for Cancer Immunotherapy. Molecular Therapy, 2016, 24, S254.	3.7	0

#	Article	IF	Citations
55	661. Synergistic Anti-Tumor Efficacy of Immunogenic Adenovirus ONCOS-102 and Standard of Care Chemotherapy in Preclinical Mesothelioma Model. Molecular Therapy, 2016, 24, S262.	3.7	3
56	Expression of DAI by an oncolytic vaccinia virus boosts the immunogenicity of the virus and enhances antitumor immunity. Molecular Therapy - Oncolytics, 2016, 3, 16002.	2.0	32
57	Treatment of osteoarthritis using a helper-dependent adenoviral vector retargeted to chondrocytes. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16008.	1.8	23
58	Enhanced anti-cancer vaccines with a new epitope improvement system. Annals of Oncology, 2016, 27, viii2.	0.6	0
59	Oncolytic Adenovirus Loaded with L-carnosine as Novel Strategy to Enhance the Antitumor Activity. Molecular Cancer Therapeutics, 2016, 15, 651-660.	1.9	41
60	Chronic Activation of Innate Immunity Correlates With Poor Prognosis in Cancer Patients Treated With Oncolytic Adenovirus. Molecular Therapy, 2016, 24, 175-183.	3.7	26
61	Oncolytic adenoviruses coated with MHC-I tumor epitopes increase the antitumor immunity and efficacy against melanoma. Oncolmmunology, 2016, 5, e1105429.	2.1	70
62	Abstract A034: Boosting the efficacy of PD-L1 blockade with oncolytic vaccine for improved antitumor responses in melanoma. , $2016, \dots$		1
63	Treatment of melanoma with a serotype 5/3 chimeric oncolytic adenovirus coding for GMâ€CSF: <scp>R</scp> esults <i>in vitro</i> , in rodents and in humans. International Journal of Cancer, 2015, 137, 1775-1783.	2.3	41
64	71. Boosting the Immunogenicity of an Oncolytic Vaccinia Virus By Expression of DAI Can Enhance Anti-Tumor Immunity in Humanized Mice. Molecular Therapy, 2015, 23, S31.	3.7	1
65	220. Evaluation of the Efficacy of a New Oncolytic Vaccine Platform in Humanized Mice. Molecular Therapy, 2015, 23, S86-S87.	3.7	0
66	622. Oncolytic Adenoviruses Loaded With Active Drugs as a Novel Drug Delivery System for Cancer Therapy. Molecular Therapy, 2015, 23, S247.	3.7	0
67	665. Toxicity and Bio-Distribution of a GM-CSF-Expressing, Chimeric Oncolytic Adenovirus ONCOS-102. Molecular Therapy, 2015, 23, S264-S265.	3.7	0
68	Synthesis and Evaluation of the Antiproliferative Properties of a Tethered Tubercidin–Platinum(II) Complex. European Journal of Organic Chemistry, 2015, 2015, 7550-7556.	1.2	6
69	Oncolytic adenoviruses coated with MHC-I tumor epitopes for a new oncolytic vaccine platform. , $2015, 3, .$		2
70	Immunological Effects of a Tumor Necrosis Factor Alpha–Armed Oncolytic Adenovirus. Human Gene Therapy, 2015, 26, 134-144.	1.4	42
71	GMCSFâ€armed vaccinia virus induces an antitumor immune response. International Journal of Cancer, 2015, 136, 1065-1072.	2.3	23
72	Oncolytic adenovirus and doxorubicinâ€based chemotherapy results in synergistic antitumor activity against softâ€tissue sarcoma. International Journal of Cancer, 2015, 136, 945-954.	2.3	51

#	Article	IF	CITATIONS
73	Oncolytic Viruses for Treatment of Cancer. , 2015, , 185-200.		O
74	Abstract B51: Treatment of melanoma with a serotype $5/3$ chimeric oncolytic adenovirus coding for GM-CSF: Results in vitro, in rodents and in humans., 2015 ,,.		0
75	The Evolution of Adenoviral Vectors through Genetic and Chemical Surface Modifications. Viruses, 2014, 6, 832-855.	1.5	53
76	In vivo magnetic resonance imaging and spectroscopy identifies oncolytic adenovirus responders. International Journal of Cancer, 2014, 134, 2878-2890.	2.3	13
77	CD40 ligand and tdTomato-armed vaccinia virus for induction of antitumor immune response and tumor imaging. Gene Therapy, 2014, 21, 195-204.	2.3	32
78	Serotype chimeric oncolytic adenovirus coding for GM-CSF for treatment of sarcoma in rodents and humans. International Journal of Cancer, 2014, 135, 720-730.	2.3	36
79	Armed Oncolytic Virus Enhances Immune Functions of Chimeric Antigen Receptor–Modified T Cells in Solid Tumors. Cancer Research, 2014, 74, 5195-5205.	0.4	269
80	Combinatorial treatment with oncolytic adenovirus and helper-dependent adenovirus augments adenoviral cancer gene therapy. Molecular Therapy - Oncolytics, 2014, 1, 14008.	2.0	19
81	Overcoming tumor resistance by heterologous adeno-poxvirus combination therapy. Molecular Therapy - Oncolytics, 2014, 1, 14006.	2.0	8
82	Fc-gamma receptor polymorphisms as predictive and prognostic factors in patients receiving oncolytic adenovirus treatment. Journal of Translational Medicine, 2013, 11, 193.	1.8	13
83	Oncolytic Adenovirus With Temozolomide Induces Autophagy and Antitumor Immune Responses in Cancer Patients. Molecular Therapy, 2013, 21, 1212-1223.	3.7	146
84	Antiviral and Antitumor T-cell Immunity in Patients Treated with GM-CSF–Coding Oncolytic Adenovirus. Clinical Cancer Research, 2013, 19, 2734-2744.	3.2	150
85	PEGylated helper-dependent adenoviral vector expressing human Apo A-I for gene therapy in LDLR-deficient mice. Gene Therapy, 2013, 20, 1124-1130.	2.3	22
86	Beyond Gene Delivery: Strategies to Engineer the Surfaces of Viral Vectors. Biomedicines, 2013, 1, 3-16.	1.4	10
87	Abstract 3304: Oncolytic adenovirus with low-dose temozolomide induces autophagy and antitumor immune responses preclinically and in cancer patients, 2013,,.		0
88	Genetic diversity and tumor immunesurveillance. Journal of Thoracic Disease, 2013, 5, 6-7.	0.6	66
89	Ad3-hTERT-E1A, a Fully Serotype 3 Oncolytic Adenovirus, in Patients With Chemotherapy Refractory Cancer. Molecular Therapy, 2012, 20, 1821-1830.	3.7	64
90	Oncolytic adenoviruses. Oncolmmunology, 2012, 1, 979-981.	2.1	31

#	Article	IF	Citations
91	Capsid-Modified Adenoviral Vectors for Improved Muscle-Directed Gene Therapy. Human Gene Therapy, 2012, 23, 1065-1070.	1.4	25
92	Targeted cancer immunotherapy with oncolytic adenovirus coding for a fully human monoclonal antibody specific for CTLA-4. Gene Therapy, 2012, 19, 988-998.	2.3	132
93	Oncolytic Viruses for Induction of Anti-Tumor Immunity. Current Pharmaceutical Biotechnology, 2012, 13, 1750-1760.	0.9	56
94	An Oncolytic Adenovirus Enhanced for Toll-like Receptor 9 Stimulation Increases Antitumor Immune Responses and Tumor Clearance. Molecular Therapy, 2012, 20, 2076-2086.	3.7	84
95	Oncolytic Immunotherapy of Advanced Solid Tumors with a CD40L-Expressing Replicating Adenovirus: Assessment of Safety and Immunologic Responses in Patients. Cancer Research, 2012, 72, 1621-1631.	0.4	117
96	Immune Response Is an Important Aspect of the Antitumor Effect Produced by a CD40L-Encoding Oncolytic Adenovirus. Cancer Research, 2012, 72, 2327-2338.	0.4	144
97	Oncolytic Adenoviruses for Cancer Immunotherapy. Advances in Cancer Research, 2012, 115, 265-318.	1.9	61
98	Synthesis and biological evaluation of unprecedented ring-expanded nucleosides (RENs) containing the imidazo[4,5-d][1,2,6]oxadiazepine ring system. Chemical Communications, 2012, 48, 9310.	2.2	33
99	Effects of capsidâ€modified oncolytic adenoviruses and their combinations with gemcitabine or silica gel on pancreatic cancer. International Journal of Cancer, 2012, 131, 253-263.	2.3	10
100	Integrin targeted oncolytic adenoviruses Ad5â€D24â€RGD and Ad5â€RGDâ€D24â€GMCSF for treatment of pat with advanced chemotherapy refractory solid tumors. International Journal of Cancer, 2012, 130, 1937-1947.	ents 2.3	82
101	CGTG-102 (Ad5/3-D24-GMCSF), a novel oncolytic adenovirus, in patients with refractory solid tumors: Experience from an advanced therapy access program. Journal of Clinical Oncology, 2012, 30, e13035-e13035.	0.8	0
102	Safety of Glucocorticoids in Cancer Patients Treated with Oncolytic Adenoviruses. Molecular Pharmaceutics, 2011, 8, 93-103.	2.3	4
103	Oncolytic vaccinia virus for the treatment of cancer. Expert Opinion on Biological Therapy, 2011, 11, 595-608.	1.4	78
104	In vivoandin vitrodistribution of type 5 and fiber-modified oncolytic adenoviruses in human blood compartments. Annals of Medicine, 2011, 43, 151-163.	1.5	17
105	Oncolytic adenovirus based on serotype 3. Cancer Gene Therapy, 2011, 18, 288-296.	2.2	51
106	Switching the fiber knob of oncolytic adenoviruses to avoid neutralizing antibodies in human cancer patients. Journal of Gene Medicine, 2011, 13, 253-261.	1.4	30
107	Immunological Effects of Low-dose Cyclophosphamide in Cancer Patients Treated With Oncolytic Adenovirus. Molecular Therapy, 2011, 19, 1737-1746.	3.7	141
108	Induction of Interferon Pathways Mediates In Vivo Resistance to Oncolytic Adenovirus. Molecular Therapy, 2011, 19, 1858-1866.	3.7	42

#	Article	IF	Citations
109	NOD2 Signaling Contributes to the Innate Immune Response Against Helper-Dependent Adenovirus Vectors Independently of MyD88 <i>In Vivo</i> . Human Gene Therapy, 2011, 22, 1071-1082.	1.4	22
110	Targeted Chemotherapy for Head and Neck Cancer with a Chimeric Oncolytic Adenovirus Coding for Bifunctional Suicide Protein FCU1. Clinical Cancer Research, 2010, 16, 2540-2549.	3.2	37
111	Discovery of a novel one-step RuO4-catalysed tandem oxidative polycyclization/double spiroketalization process. Access to a new type of polyether bis-spiroketal compound displaying antitumour activity. Tetrahedron, 2010, 66, 9370-9378.	1.0	11
112	Human adenovirus replication in immunocompetent Syrian hamsters can be attenuated with chlorpromazine or cidofovir. Journal of Gene Medicine, 2010, 12, 435-445.	1.4	36
113	Prolonged systemic circulation of chimeric oncolytic adenovirus Ad5/3-Cox2L-D24 in patients with metastatic and refractory solid tumors. Gene Therapy, 2010, 17, 892-904.	2.3	61
114	Defects in Innate Immunity Render Breast Cancer Initiating Cells Permissive to Oncolytic Adenovirus. PLoS ONE, 2010, 5, e13859.	1.1	25
115	Antiangiogenic Arming of an Oncolytic Vaccinia Virus Enhances Antitumor Efficacy in Renal Cell Cancer Models. Journal of Virology, 2010, 84, 856-866.	1.5	50
116	MyD88-Dependent Silencing of Transgene Expression During the Innate and Adaptive Immune Response to Helper-Dependent Adenovirus. Human Gene Therapy, 2010, 21, 325-336.	1.4	31
117	Oncolytic Adenovirus ICOVIR-7 in Patients with Advanced and Refractory Solid Tumors. Clinical Cancer Research, 2010, 16, 3035-3043.	3.2	97
118	Treatment of Cancer Patients With a Serotype 5/3 Chimeric Oncolytic Adenovirus Expressing GMCSF. Molecular Therapy, 2010, 18, 1874-1884.	3.7	201
119	Oncolytic adenovirus treatment of a patient with refractory neuroblastoma. Acta Oncol $ ilde{A}^3$ gica, 2010, 49, 120-122.	0.8	32
120	Multimodal approach using oncolytic adenovirus, cetuximab, chemotherapy and radiotherapy in HNSCC low passage tumour cell cultures. European Journal of Cancer, 2010, 46, 625-635.	1.3	25
121	Oncolytic Adenovirus Coding for Granulocyte Macrophage Colony-Stimulating Factor Induces Antitumoral Immunity in Cancer Patients. Cancer Research, 2010, 70, 4297-4309.	0.4	197
122	Calcium Gluconate in Phosphate Buffered Saline Increases Gene Delivery with Adenovirus Type 5. PLoS ONE, 2010, 5, e13103.	1.1	2
123	Serotype Chimeric and Fiber-Mutated Adenovirus Ad5/19p-HIT for Targeting Renal Cancer and Untargeting the Liver. Human Gene Therapy, 2009, 20, 611-620.	1.4	17
124	Short-term Correction of Arginase Deficiency in a Neonatal Murine Model With a Helper-dependent Adenoviral Vector. Molecular Therapy, 2009, 17, 1155-1163.	3.7	29
125	Bioengineered Factor IX Molecules with Increased Catalytic Activity Improve the Therapeutic Index of Gene Therapy Vectors for Hemophilia B. Human Gene Therapy, 2009, 20, 479-485.	1.4	18
126	Discovery of a new PCC-mediated stereoselective oxidative spiroketalization process. An access to a new type of poly-THF spiroketal compound displaying anticancer activity. Organic and Biomolecular Chemistry, 2009, 7, 3036.	1.5	13

#	Article	lF	CITATIONS
127	Suppression of neuropil aggregates and neurological symptoms by an intracellular antibody implicates the cytoplasmic toxicity of mutant huntingtin. Journal of Cell Biology, 2008, 181, 803-816.	2.3	106
128	Immune Response to Helper Dependent Adenoviral Mediated Liver Gene Therapy: Challenges and Prospects. Current Gene Therapy, 2007, 7, 297-305.	0.9	60
129	Toll-like Receptor 9 Triggers an Innate Immune Response to Helper-dependent Adenoviral Vectors. Molecular Therapy, 2007, 15, 378-385.	3.7	130
130	Correction of Murine Hemophilia A and Immunological Differences of Factor VIII Variants Delivered by Helper-dependent Adenoviral Vectors. Molecular Therapy, 2007, 15, 2080-2087.	3.7	45
131	Dendritic Cell Function After Gene Transfer with Adenovirus-calcium Phosphate Co-precipitates. Molecular Therapy, 2007, 15, 386-392.	3.7	20
132	Antigen-Specific Tolerance of Human $\hat{1}\pm 1$ -Antitrypsin Induced by Helper-Dependent Adenovirus. Human Gene Therapy, 2007, 18, 1215-1224.	1.4	24
133	Ischemic Neoangiogenesis Enhanced by \hat{l}^2 2 -Adrenergic Receptor Overexpression. Circulation Research, 2005, 97, 1182-1189.	2.0	154
134	PEGylated helper-dependent adenoviral vectors: highly efficient vectors with an enhanced safety profile. Gene Therapy, 2005, 12, 579-587.	2.3	115
135	AKT Participates in Endothelial Dysfunction in Hypertension. Circulation, 2004, 109, 2587-2593.	1.6	89
136	Generation of Helper-Dependent Adenoviral Vectors by Homologous Recombination. Molecular Therapy, 2002, 5, 204-210.	3.7	49
137	Oncolytic Adenoviral Vector-Mediated Expression of an Anti-PD-L1-scFv Improves Anti-Tumoral Efficacy in a Melanoma Mouse Model. Frontiers in Oncology, 0, 12, .	1.3	9