Kirk A Peterson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9527601/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interaction of Th with H ^{0/–/+} : Combined Experimental and Theoretical Thermodynamic Properties. Journal of Physical Chemistry A, 2022, 126, 198-210.	2.5	9
2	ThAu2â [°] , ThAu2Oâ [°] , and ThAuOHâ [°] anions: Photoelectron spectroscopic and theoretical characterization. Journal of Chemical Physics, 2022, 156, 054305.	3.0	2
3	A high level theory investigation on the lowest-lying ionization potentials of glycine (NH ₂ CH ₂ COOH). Physical Chemistry Chemical Physics, 2022, 24, 17751-17758.	2.8	1
4	Improving the theoretical description of Ln(<scp>iii</scp>)/An(<scp>iii</scp>) separation with phosphinic acid ligands: a benchmarking study of structure and selectivity. Physical Chemistry Chemical Physics, 2021, 23, 19558-19570.	2.8	6
5	Benchmarking Antioxidant-Related Properties for Gallic Acid through the Use of DFT, MP2, CCSD, and CCSD(T) Approaches. Journal of Physical Chemistry A, 2021, 125, 198-208.	2.5	49
6	Bond Dissociation Energies in Heavy Element Chalcogen and Halogen Small Molecules. Journal of Physical Chemistry A, 2021, 125, 1892-1902.	2.5	10
7	The electron affinity of the uranium atom. Journal of Chemical Physics, 2021, 154, 224307.	3.0	13
8	Coupled Cluster Studies of Platinum–Actinide Interactions. Thermochemistry of PtAnO ^{<i>n</i>+} (<i>n</i> = 0–2 and An = U, Np, Pu). Journal of Physical Chemistry A, 2021, 125, 5335-5345.	2.5	6
9	Guided Ion Beam Studies of the Thorium Monocarbonyl Cation Bond Dissociation Energy and Theoretical Unveiling of Different Isomers of [Th,O,C] ⁺ and Their Rearrangement Mechanism. Inorganic Chemistry, 2021, 60, 10426-10438.	4.0	5
10	Ionization potentials for the H2CO trimer. Journal of Chemical Physics, 2021, 155, 084304.	3.0	4
11	Nonadiabatic Dynamics at the Gas–Molten Metal Interface: State-to-State Resolved Scattering of NO from Hot Gallium (600–1000 K). Journal of Physical Chemistry C, 2021, 125, 341-353.	3.1	3
12	Polarizabilities of neutral atoms and atomic ions with a noble gas electron configuration. Journal of Chemical Physics, 2020, 153, 174304.	3.0	6
13	Calculated Ionization Potentials of MO ₃ and MO ₂ for M = U, Mo, W, and Nd. Journal of Physical Chemistry A, 2020, 124, 6913-6919.	2.5	9
14	A Computational Assessment of Actinide Dioxide Cations AnO ₂ ²⁺ for An = U to Lr: The Limited Stability Range of the Hexavalent Actinyl Moiety, [Oâ•Anâ•O] ²⁺ . Inorganic Chemistry, 2020, 59, 4554-4566.	4.0	17
15	Probing the ionization potentials of the formaldehyde dimer. Journal of Chemical Physics, 2020, 152, 194305.	3.0	6
16	Coupled Cluster Study of the Interactions of AnO ₂ , AnO ₂ ⁺ , and AnO ₂ ²⁺ (An = U, Np) with N ₂ and CO. Inorganic Chemistry, 2020, 59, 4753-4763.	4.0	4
17	Spectroscopic and theoretical studies of UN and UN+. Journal of Chemical Physics, 2020, 152, 094302.	3.0	11
18	Guided Ion Beam and Quantum Chemical Investigation of the Thermochemistry of Thorium Dioxide Cations: Thermodynamic Evidence for Participation of f Orbitals in Bonding. Inorganic Chemistry, 2020, 59, 3118-3131.	4.0	16

#	Article	IF	CITATIONS
19	Coupled cluster spectroscopic properties of the coinage metal nitrosyls, M–NO (M = Cu, Ag, Au). Theoretical Chemistry Accounts, 2020, 139, 1.	1.4	5
20	The Molpro quantum chemistry package. Journal of Chemical Physics, 2020, 152, 144107.	3.0	603
21	Beyond chemical accuracy in the heavy p-block: The first ionization potentials and electron affinities of Ga–Kr, In–Xe, and Tl–Rn. Journal of Chemical Physics, 2019, 151, 024303.	3.0	17
22	Bond energy of ThN+: A guided ion beam and quantum chemical investigation of the reactions of thorium cation with N2 and NO. Journal of Chemical Physics, 2019, 151, 034304.	3.0	20
23	Activation of Water by Pentavalent Actinide Dioxide Cations: Characteristic Curium Revealed by a Reactivity Turn after Americium. Inorganic Chemistry, 2019, 58, 14005-14014.	4.0	9
24	Potential Energy Surface of Group 11 Trimers (Cu, Ag, Au): Bond Angle Isomerism in Au3. Journal of Physical Chemistry A, 2019, 123, 1198-1207.	2.5	11
25	Solid Oganesson via a Many-Body Interaction Expansion Based on Relativistic Coupled-Cluster Theory and from Plane-Wave Relativistic Density Functional Theory. Journal of Physical Chemistry A, 2019, 123, 4201-4211.	2.5	23
26	Actinyl cation–cation interactions in the gas phase: an accurate thermochemical study. Physical Chemistry Chemical Physics, 2019, 21, 7953-7964.	2.8	18
27	Gas Phase Hydrolysis and Oxoâ€Exchange of Actinide Dioxide Cations: Elucidating Intrinsic Chemistry from Protactinium to Einsteinium. Chemistry - A European Journal, 2019, 25, 4245-4254.	3.3	16
28	Electronic Structure Predictions of the Energetic Properties of Tellurium Fluorides. Inorganic Chemistry, 2019, 58, 8279-8292.	4.0	10
29	Computational Study of Molecular Hydrogen Adsorption over Small (MO ₂) _{<i>n</i>} Nanoclusters (M = Ti, Zr, Hf; <i>n</i> = 1 to 4). Journal of Physical Chemistry A, 2018, 122, 4338-4349.	2.5	5
30	Alkali-Metal Trihalides: M+X3–Ion Pair or MX–X2Complex?. Journal of Physical Chemistry B, 2018, 122, 3339-3353.	2.6	8
31	Structures and Heats of Formation of Simple Alkaline Earth Metal Compounds II: Fluorides, Chlorides, Oxides, and Hydroxides for Ba, Sr, and Ra. Journal of Physical Chemistry A, 2018, 122, 316-327.	2.5	18
32	On the Development of Accurate Gaussian Basis Sets for f-Block Elements. Annual Reports in Computational Chemistry, 2018, 14, 47-74.	1.7	6
33	Noncovalent Interactions between Molecular Hydrogen and the Alkali Fluorides: H–H···F–M (M = Li,) Tj E Computation, 2018, 14, 5118-5127.	TQq1 1 0 5.3	.784314 rg8 3
34	The photoelectron spectra of the isomeric 1- and 2-methyltetrazoles; their equilibrium structures and vibrational analysis by <i>ab initio</i> calculations. Journal of Chemical Physics, 2018, 149, 034305.	3.0	1
35	The bismuth tetramer Bi4: the ν3 key to experimental observation. Physical Chemistry Chemical Physics, 2018, 20, 21881-21889.	2.8	3
36	Prediction of Bond Dissociation Energies/Heats of Formation for Diatomic Transition Metal Compounds: CCSD(T) Works. Journal of Chemical Theory and Computation, 2017, 13, 1057-1066.	5.3	92

#	Article	IF	CITATIONS
37	Acidity of M(VI)O2(OH)2 for M = Group 6, 16, and U as Central Atoms. Journal of Physical Chemistry A, 2017, 121, 1041-1050.	2.5	7
38	Benchmark-Quality Atomization Energies for BeH and BeH ₂ . Journal of Chemical Theory and Computation, 2017, 13, 649-653.	5.3	3
39	A combined theoretical and experimental study of the ionic states of iodopentafluorobenzene. Journal of Chemical Physics, 2017, 146, 084302.	3.0	3
40	Spectroscopic and theoretical studies of ThCl and ThCl+. Journal of Chemical Physics, 2017, 146, 054307.	3.0	10
41	A combined theoretical and experimental study of the valence and Rydberg states of iodopentafluorobenzene. Journal of Chemical Physics, 2017, 146, 174301.	3.0	6
42	Remarkably High Stability of Late Actinide Dioxide Cations: Extending Chemistry to Pentavalent Berkelium and Californium. Chemistry - A European Journal, 2017, 23, 17369-17378.	3.3	19
43	Characterization of Carbenes via Hydrogenation Energies, Stability, and Reactivity: What's in a Name?. Chemistry - A European Journal, 2017, 23, 17556-17565.	3.3	11
44	Structural and Vibrational Properties of Iodopentafluorobenzene: A Combined Raman and Infrared Spectral and Theoretical Study. Journal of Physical Chemistry A, 2017, 121, 7917-7924.	2.5	3
45	The ionic states of difluoromethane: A reappraisal of the low energy photoelectron spectrum including ab initio configuration interaction computations. Journal of Chemical Physics, 2017, 147, 074305.	3.0	3
46	Correlation consistent basis sets for actinides. II. The atoms Ac and Np–Lr. Journal of Chemical Physics, 2017, 147, 084108.	3.0	63
47	Guided ion beam and theoretical studies of the bond energy of SmS+. Journal of Chemical Physics, 2017, 147, 214307.	3.0	5
48	Accurate spectroscopic characterization of the HOC(O)O radical: A route toward its experimental identification. Journal of Chemical Physics, 2017, 147, 024302.	3.0	4
49	Gaussian basis sets for use in correlated molecular calculations. XI. Pseudopotential-based and all-electron relativistic basis sets for alkali metal (K–Fr) and alkaline earth (Ca–Ra) elements. Journal of Chemical Physics, 2017, 147, 244106.	3.0	144
50	A combined photoelectron spectroscopy and relativistic <i>ab initio</i> studies of the electronic structures of UFO and UFOâ^'. Journal of Chemical Physics, 2016, 144, 084309.	3.0	4
51	<i>Ab initio</i> ro-vibronic spectroscopy of the Î2 PCS radical and Σ+1PCSâ^' anion. Journal of Chemical Physics, 2016, 145, 224303.	3.0	5
52	Combined theoretical and experimental study of the valence, Rydberg, and ionic states of chlorobenzene. Journal of Chemical Physics, 2016, 144, 124302.	3.0	11
53	A spectroscopic case for SPSi detection: The third-row in a single molecule. Journal of Chemical Physics, 2016, 145, 124311.	3.0	41
54	Toward a W4-F12 approach: Can explicitly correlated and orbital-based <i>ab initio</i> CCSD(T) limits be reconciled?. Journal of Chemical Physics, 2016, 144, 214101.	3.0	89

Kirk A Peterson

#	Article	IF	CITATIONS
55	Combined theoretical and experimental study of the valence, Rydberg and ionic states of fluorobenzene. Journal of Chemical Physics, 2016, 144, 204305.	3.0	15
56	Correlation consistent basis sets for lanthanides: The atoms La–Lu. Journal of Chemical Physics, 2016, 145, 054111.	3.0	96
57	Bond energies of ThO+ and ThC+: A guided ion beam and quantum chemical investigation of the reactions of thorium cation with O2 and CO. Journal of Chemical Physics, 2016, 144, 184309.	3.0	48
58	Use of Improved Orbitals for CCSD(T) Calculations for Predicting Heats of Formation of Group IV and Group VI Metal Oxide Monomers and Dimers and UCl ₆ . Journal of Chemical Theory and Computation, 2016, 12, 3583-3592.	5.3	43
59	Structures and Properties of the Products of the Reaction of Lanthanide Atoms with H ₂ O: Dominance of the +II Oxidation State. Journal of Physical Chemistry A, 2016, 120, 793-804.	2.5	15
60	Theoretical spectroscopy study of the low-lying electronic states of UX and UX+, X = F and Cl. Journal of Chemical Physics, 2015, 143, 184313.	3.0	17
61	Interpretation of the photoelectron, ultraviolet, and vacuum ultraviolet photoabsorption spectra of bromobenzene by <i>ab initio</i> configuration interaction and DFT computations. Journal of Chemical Physics, 2015, 143, 164303.	3.0	19
62	Multireference configuration interaction calculations of the first six ionization potentials of the uranium atom. Journal of Chemical Physics, 2015, 143, 184308.	3.0	10
63	Correlation consistent basis sets for actinides. I. The Th and U atoms. Journal of Chemical Physics, 2015, 142, 074105.	3.0	135
64	Reliable Potential Energy Surfaces for the Reactions of H ₂ 0 with ThO ₂ , PaO ₂ ⁺ , UO ₂ ²⁺ , and UO ₂ ⁺ . Journal of Physical Chemistry A, 2015, 119, 11422-11431.	2.5	55
65	Thom H. Dunning, Jr.: Contributions to chemical theory and computing. Theoretical Chemistry Accounts, 2015, 134, 1.	1.4	26
66	Gas Phase Properties of MX ₂ and MX ₄ (X = F, Cl) for M = Group 4, Group 14, Cerium, and Thorium. Journal of Physical Chemistry A, 2015, 119, 5790-5803.	2.5	43
67	The cc-pV5Z-F12 basis set: reaching the basis set limit in explicitly correlated calculations. Molecular Physics, 2015, 113, 1551-1558.	1.7	57
68	Accurate Calculation of the Dissociation Energy of the Highly Anharmonic System ClHCl [–] . Journal of Physical Chemistry A, 2015, 119, 5158-5164.	2.5	4
69	Composite thermochemistry of gas phase U(VI)-containing molecules. Journal of Chemical Physics, 2014, 141, 244308.	3.0	28
70	Static electric dipole polarizabilities of An5+/6+ and AnO2+/2+ (An = U, Np, and Pu) ions. Journal of Chemical Physics, 2014, 141, 234304.	3.0	4
71	<i>Ab initio</i> ro-vibronic spectroscopy of SiCCl (\$ilde{X}^2Pi\$XÌf2Î). Journal of Chemical Physics, 2014, 141, 034305.	3.0	4
72	A systematic approach to vertically excited states of ethylene using configuration interaction and coupled cluster techniques, Journal of Chemical Physics, 2014, 141, 104302	3.0	41

#	Article	IF	CITATIONS
73	Correlation consistent basis sets for explicitly correlated wavefunctions: Pseudopotential-based basis sets for the post- <i>d</i> main group elements Ga–Rn. Journal of Chemical Physics, 2014, 141, 094106.	3.0	62
74	Improved accuracy benchmarks of small molecules using correlation consistent basis sets. Theoretical Chemistry Accounts, 2014, 133, .	1.4	72
75	Active Thermochemical Tables: dissociation energies of several homonuclear first-row diatomics and related thermochemical values. Theoretical Chemistry Accounts, 2014, 133, 1.	1.4	95
76	Correlation consistent, Douglas–Kroll–Hess relativistic basis sets for the 5p and 6p elements. Theoretical Chemistry Accounts, 2014, 133, 1.	1.4	60
77	Reactions of Lanthanide Atoms with Oxygen Difluoride and the Role of the Ln Oxidation State. Inorganic Chemistry, 2014, 53, 446-456.	4.0	25
78	Experimental and theoretical investigation of correlated fine structure branching ratios arising from state-selected predissociation of BrO (A ² Î _{3/2}). Physical Chemistry Chemical Physics, 2014, 16, 607-615.	2.8	1
79	An <i>ab initio</i> investigation of the ground and low-lying singlet and triplet electronic states of XNO2 and XONO (X = Cl, Br, and I). Journal of Chemical Physics, 2014, 140, 044308.	3.0	5
80	An expanded calibration study of the explicitly correlated CCSD(T)-F12b method using large basis set standard CCSD(T) atomization energies. Journal of Chemical Physics, 2013, 139, 084110.	3.0	48
81	Explicitly correlated composite thermochemistry of transition metal species. Journal of Chemical Physics, 2013, 139, 094302.	3.0	79
82	Accurate bond dissociation energies (D0) for FHFâ^'isotopologues. Molecular Physics, 2013, 111, 2647-2652.	1.7	17
83	Correlation Consistent Gaussian Basis Sets for H, B–Ne with Dirac–Fock AREP Pseudopotentials: Applications in Quantum Monte Carlo Calculations. Journal of Chemical Theory and Computation, 2013, 9, 2170-2178.	5.3	27
84	Is near-"spectroscopic accuracy―possible for heavy atoms and coupled cluster theory? An investigation of the first ionization potentials of the atoms Ga–Kr. Journal of Chemical Physics, 2013, 138, 164312.	3.0	7
85	Anharmonic zero point vibrational energies: Tipping the scales in accurate thermochemistry calculations?. Journal of Chemical Physics, 2013, 138, 044311.	3.0	52
86	Thermal Rate Constants for the O(³ P) + HBr and O(³ P) + DBr Reactions: Transition-State Theory and Quantum Mechanical Calculations. Journal of Physical Chemistry A, 2013, 117, 12703-12710.	2.5	6
87	Static Electric Dipole Polarizabilities of Tri- and Tetravalent U, Np, and Pu Ions. Journal of Physical Chemistry A, 2013, 117, 11874-11880.	2.5	3
	The alkaline earth dimer cations (Be ₂ ⁺ , Mg ₂ ⁺ ,) Tj ETQq0) 0 rgBT /C	Overlock 10 Tf
88	Coupled cluster and full configuration interaction studies ^{â€} . Molecular Physics, 2013, 111, 2292-2298.	1.7	54
89	<i>Ab initio</i> ro-vibrational spectroscopy of the group 11 cyanides: CuCN, AgCN, and AuCN. Journal of Chemical Physics, 2013, 138, 134314.	3.0	25
90	State-Selected Reaction of Muonium with Vibrationally Excited H ₂ . Journal of Physical Chemistry Letters, 2012, 3, 2755-2760.	4.6	24

#	Article	lF	CITATIONS
91	The Use of Explicitly Correlated Methods on XeF ₆ Predicts a <i>C</i> _{3<i>v</i>} Minimum with a Sterically Active, Free Valence Electron Pair on Xe. Journal of Physical Chemistry A, 2012, 116, 9777-9782.	2.5	29
92	Spectroscopic investigations of ThF and ThF+. Journal of Chemical Physics, 2012, 136, 104305.	3.0	36
93	Accurate ab initio potential energy surfaces for the 3A′′ and 3A′ electronic states of the O(3P)+HBr system. Journal of Chemical Physics, 2012, 136, 174316.	3.0	8
94	A Practical Guide to Reliable First Principles Computational Thermochemistry Predictions Across the Periodic Table. Annual Reports in Computational Chemistry, 2012, , 1-28.	1.7	94
95	Explicitly Correlated Coupled Cluster Calculations for Molecules Containing Group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) Elements: Optimized Complementary Auxiliary Basis Sets for Valence and Core–Valence Basis Sets. Journal of Chemical Theory and Computation, 2012, 8, 518-526.	5.3	39
96	Further benchmarks of a composite, convergent, statistically calibrated coupled-cluster-based approach for thermochemical and spectroscopic studies. Molecular Physics, 2012, 110, 2381-2399.	1.7	170
97	Chemical accuracy in ab initio thermochemistry and spectroscopy: current strategies and future challenges. Theoretical Chemistry Accounts, 2012, 131, 1.	1.4	381
98	Are ab initio quantum chemistry methods able to predict vibrational states up to the dissociation limit for multi-electron molecules close to spectroscopic accuracy?. Physical Chemistry Chemical Physics, 2011, 13, 3654-3659.	2.8	19
99	Ab Initio Coupled Cluster Determination of the Heats of Formation of C ₂ H ₂ F ₂ , C ₂ F ₂ , and C ₂ F ₄ . Journal of Physical Chemistry A, 2011, 115, 1440-1451.	2.5	38
100	Accurate <i>ab initio</i> ro-vibronic spectroscopy of the \$ilde X^2 Pi\$XÌf2Î CCN radical using explicitly correlated methods. Journal of Chemical Physics, 2011, 135, 144309.	3.0	29
101	On the effectiveness of CCSD(T) complete basis set extrapolations for atomization energies. Journal of Chemical Physics, 2011, 135, 044102.	3.0	250
102	Gaussian basis sets for use in correlated molecular calculations. VII. Valence, core-valence, and scalar relativistic basis sets for Li, Be, Na, and Mg. Theoretical Chemistry Accounts, 2011, 128, 69-82.	1.4	536
103	Accurate potential energy curves for the group 12 dimers Zn2, Cd2, and Hg2. Theoretical Chemistry Accounts, 2011, 129, 651-656.	1.4	33
104	Application of explicitly correlated coupled-cluster methods to molecules containing post-3 <i>d</i> main group elements. Molecular Physics, 2011, 109, 2607-2623.	1.7	33
105	Kinetic Isotope Effects for the Reactions of Muonic Helium and Muonium with H ₂ . Science, 2011, 331, 448-450.	12.6	86
106	Ab initio spectroscopic characterization of the HNNO and ONHN radicals. Journal of Chemical Physics, 2011, 134, 084308.	3.0	11
107	The kinetics study of the S + S2→ S3reaction by the chaperone mechanism. Journal of Chemical Physics, 2011, 134, 154508.	3.0	7
108	Kinetics of the reaction of the heaviest hydrogen atom with H2, the 4He <i>μ</i> Â+ÂH2 → 4He <i>μ</i> H +Â reaction: Experiments, accurate quantal calculations, and variational transition state theory, including kinetic isotope effects for a factor of 36.1 in isotopic mass. Journal of Chemical Physics, 2011, 135, 184310.	H 3.0	35

#	Article	IF	CITATIONS
109	Third Row Transition Metal Hexafluorides, Extraordinary Oxidizers, and Lewis Acids: Electron Affinities, Fluoride Affinities, and Heats of Formation of WF ₆ , ReF ₆ , OsF ₆ , IrF ₆ , PtF ₆ , and AuF ₆ . Inorganic Chemistry, 2010, 49, 1056-1070.	4.0	109
110	A highly accurate potential energy curve for the mercury dimer. Journal of Chemical Physics, 2010, 132, 114301.	3.0	43
111	Molecular core-valence correlation effects involving the post-d elements Ga–Rn: Benchmarks and new pseudopotential-based correlation consistent basis sets. Journal of Chemical Physics, 2010, 133, 174116.	3.0	207
112	Structures and Heats of Formation of Simple Alkali Metal Compounds: Hydrides, Chlorides, Fluorides, Hydroxides, and Oxides for Li, Na, and K. Journal of Physical Chemistry A, 2010, 114, 4272-4281.	2.5	37
113	Refined Theoretical Estimates of the Atomization Energies and Molecular Structures of Selected Small Oxygen Fluorides. Journal of Physical Chemistry A, 2010, 114, 613-623.	2.5	36
114	A theoretical study of the low-lying electronic states of OIO and the ground states of IOO and OIO ^{â^'} . Molecular Physics, 2010, 108, 393-408.	1.7	19
115	Thermodynamic Properties of the XO ₂ , X ₂ O, XYO, X ₂ O ₂ , and XYO ₂ (X, Y = Cl, Br, and I) Isomers. Journal of Physical Chemistry A, 2010, 114, 4254-4265.	2.5	38
116	Calibration study of the CCSD(T)-F12a/b methods for C2 and small hydrocarbons. Journal of Chemical Physics, 2010, 133, 184102.	3.0	57
117	Correlation consistent basis sets for molecular core-valence effects with explicitly correlated wave functions: The atoms B–Ne and Al–Ar. Journal of Chemical Physics, 2010, 132, 054108.	3.0	253
118	Correlation consistent basis sets for explicitly correlated wavefunctions: valence and core–valence basis sets for Li, Be, Na, and Mg. Physical Chemistry Chemical Physics, 2010, 12, 10460.	2.8	104
119	Functional Representation for the Bornâ `Oppenheimer Diagonal Correction and Bornâ `Huang Adiabatic Potential Energy Surfaces for Isotopomers of H ₃ . Journal of Physical Chemistry A, 2009, 113, 4479-4488.	2.5	34
120	High level coupled cluster determination of the structure, frequencies, and heat of formation of water. Journal of Chemical Physics, 2009, 131, 154306.	3.0	34
121	Optimized complementary auxiliary basis sets for explicitly correlated methods: aug-cc-pVnZ orbital basis sets. Chemical Physics Letters, 2009, 476, 303-307.	2.6	196
122	Accurate Thermochemistry for Transition Metal Oxide Clusters. Journal of Physical Chemistry A, 2009, 113, 7861-7877.	2.5	156
123	Energy-Consistent Pseudopotentials for the 5d Elements—Benchmark Calculations for Oxides, Nitrides, and Pt ₂ . Journal of Physical Chemistry A, 2009, 113, 12478-12484.	2.5	16
124	Extrapolating MP2 and CCSD explicitly correlated correlation energies to the complete basis set limit with first and second row correlation consistent basis sets. Journal of Chemical Physics, 2009, 131, 194105.	3.0	251
125	On the Ionization Energy of HfO. Journal of Physical Chemistry A, 2009, 113, 12353-12355.	2.5	6
126	Energy-consistent pseudopotentials and correlation consistent basis sets for the 5d elements Hf–Pt. Journal of Chemical Physics, 2009, 130, 164108.	3.0	579

#	Article	IF	CITATIONS
127	Does the 4f Electron Configuration Affect Molecular Geometries? A Joint Computational, Vibrational Spectroscopic, and Electron Diffraction Study of Dysprosium Tribromide. Inorganic Chemistry, 2009, 48, 4143-4153.	4.0	16
128	Heats of Formation of the H1,2OmSn (m, n = 0â^'3) Molecules from Electronic Structure Calculations. Journal of Physical Chemistry A, 2009, 113, 11343-11353.	2.5	52
129	A theoretical study of the spectroscopic properties of the ground and first excited electronic state of HS2. Chemical Physics, 2008, 346, 34-44.	1.9	29
130	A survey of factors contributing to accurate theoretical predictions of atomization energies and molecular structures. Journal of Chemical Physics, 2008, 129, 204105.	3.0	345
131	CICIO2 Is the Most Stable Isomer of CI2O2. Accurate Coupled Cluster Energetics and Electronic Spectra of CI2O2 Isomers. Journal of Physical Chemistry A, 2008, 112, 9623-9627.	2.5	24
132	Benchmark calculations on the adiabatic ionization potentials of M–NH3â€^(M=Na,Al,Ga,In,Cu,Ag). Journal of Chemical Physics, 2008, 128, 154301.	3.0	16
133	Structure and Heats of Formation of Iodine Fluorides and the Respective Closed-Shell Ions from CCSD(T) Electronic Structure Calculations and Reliable Prediction of the Steric Activity of the Free-Valence Electron Pair in CIF ₆ ^{â[^]} , BrF ₆ ^{â[^]} , and IF ₆ ^{â[^]} , Inorganic Chemistry, 2008, 47, 5485-5494.	4.0	53
134	Optimized auxiliary basis sets for explicitly correlated methods. Journal of Chemical Physics, 2008, 129, 184108.	3.0	445
135	Prediction of Vibrational Frequencies of UO22+ at the CCSD(T) Level. Journal of Physical Chemistry A, 2008, 112, 4095-4099.	2.5	45
136	The CCSD(T) complete basis set limit for Ne revisited. Journal of Chemical Physics, 2008, 129, 194115.	3.0	41
137	Systematically convergent basis sets for explicitly correlated wavefunctions: The atoms H, He, B–Ne, and Al–Ar. Journal of Chemical Physics, 2008, 128, 084102.	3.0	1,115
138	Determination of the rate constant for sulfur recombination by quasiclassical trajectory calculations. Journal of Chemical Physics, 2008, 128, 204306.	3.0	22
139	Probing the limits of accuracy in electronic structure calculations: Is theory capable of results uniformly better than "chemical accuracy�. Journal of Chemical Physics, 2007, 126, 114105.	3.0	87
140	Hg+Br→HgBr recombination and collision-induced dissociation dynamics. Journal of Chemical Physics, 2007, 127, 164304.	3.0	47
141	Chapter 11 Gaussian Basis Sets Exhibiting Systematic Convergence to the Complete Basis Set Limit. Annual Reports in Computational Chemistry, 2007, 3, 195-206.	1.7	49
142	Correlation Consistent Basis Sets with Relativistic Effective Core Potentials: The Transition Metal Elements Y and Hg. ACS Symposium Series, 2007, , 125-151.	0.5	2
143	Energy-consistent relativistic pseudopotentials and correlation consistent basis sets for the 4d elements Y–Pd. Journal of Chemical Physics, 2007, 126, 124101.	3.0	822
144	Aqueous Microsolvation of Mercury Halide Speciesâ€. Journal of Physical Chemistry A, 2007, 111, 11342-11349.	2.5	28

#	Article	IF	CITATIONS
145	The group 12 metal chalcogenides: an accurate multireference configuration interaction and coupled cluster study. Molecular Physics, 2007, 105, 1139-1155.	1.7	61
146	Systematically Convergent Correlation Consistent Basis Sets for Molecular Coreâ^'Valence Correlation Effects:  The Third-Row Atoms Gallium through Krypton. Journal of Physical Chemistry A, 2007, 111, 11383-11393.	2.5	138
147	Heats of Formation of Krypton Fluorides and Stability Predictions for KrF ₄ and KrF ₆ from High Level Electronic Structure Calculations. Inorganic Chemistry, 2007, 46, 10016-10021.	4.0	25
148	Quantitative Computational Thermochemistry of Transition Metal Species. Journal of Physical Chemistry A, 2007, 111, 11269-11277.	2.5	153
149	The Nature of Halogen···Halide Synthons:  Theoretical and Crystallographic Studies. Journal of Physical Chemistry A, 2007, 111, 2319-2328.	2.5	78
150	Coupled-cluster study of the electronic structure and energetics of tetrasulfur, S4. Journal of Chemical Physics, 2007, 127, 174305.	3.0	23
151	Chemically Accurate Thermochemistry of Cadmium:  An ab Initio Study of Cd + XY (X = H, O, Cl, Br; Y =) Tj E	TQg1 1 0.1	784314 rgBT 26
152	On the Spectroscopic and Thermochemical Properties of ClO, BrO, IO, and Their Anions. Journal of Physical Chemistry A, 2006, 110, 13877-13883.	2.5	706
153	Comment on â€~Pople versus Dunning basis sets for group IA metal hydrides and some other second row hydrides: The case against a De Facto standard' by R.A. Klein and M.A. Zottola [Chem. Phys. Lett. 419 (2006) 254–258]. Chemical Physics Letters, 2006, 430, 459-463.	2.6	7
154	An ab initio study of the low-lying electronic states of S3. Journal of Chemical Physics, 2006, 125, 084314.	3.0	43
155	The Nature of Halogenâ‹â‹â‹Halogen Synthons: Crystallographic and Theoretical Studies. Chemistry - A European Journal, 2006, 12, 8952-8960.	3.3	399
156	Sources of error in electronic structure calculations on small chemical systems. Journal of Chemical Physics, 2006, 124, 054107.	3.0	183
157	Multiple bonds to gold: a theoretical investigation of XAuC (X=F, Cl, Br, I) molecules. Chemical Physics, 2005, 311, 177-186.	1.9	46
158	Systematically convergent basis sets for transition metals. II. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements. Theoretical Chemistry Accounts, 2005, 114, 283-296.	1.4	1,034
159	Application of equation-of-motion coupled-cluster methods to low-lying singlet and triplet electronic states of HBO and BOH. Journal of Chemical Physics, 2005, 122, 234316.	3.0	7
160	A hierarchical family of three-dimensional potential energy surfaces for He-CO. Journal of Chemical Physics, 2005, 123, 084314.	3.0	55
161	A theoretical spectroscopic study of HeI and HeBr. Physical Chemistry Chemical Physics, 2005, 7, 1694-1699.	2.8	9
162	Methyl Cation Affinities of Rare Gases and Nitrogen and the Heat of Formation of Diazomethane. Journal of Physical Chemistry A, 2005, 109, 4073-4080.	2.5	31

#	Article	IF	CITATIONS
163	Ab Initio Thermochemistry Involving Heavy Atoms:  An Investigation of the Reactions Hg + IX (X = I, Br,) Tj E	TQq110.	784314 rgBT
164	Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc–Zn. Journal of Chemical Physics, 2005, 123, 064107.	3.0	1,223
165	Heats of Formation of Xenon Fluorides and the Fluxionality of XeF6from High Level Electronic Structure Calculations. Journal of the American Chemical Society, 2005, 127, 8627-8634.	13.7	75
166	Benchmark calculations of the complete configuration-interaction limit of Born–Oppenheimer diagonal corrections to the saddle points of isotopomers of the H+H2 reaction. Journal of Chemical Physics, 2005, 122, 224313.	3.0	39
167	Accurate Global Potential Energy Surface and Reaction Dynamics for the Ground State of HgBr2. Journal of Physical Chemistry A, 2005, 109, 8765-8773.	2.5	90
168	Low-lying electronic states of FeNC and FeCN: A theoretical journey into isomerization and quartet/sextet competition. Journal of Chemical Physics, 2004, 120, 4726-4741.	3.0	39
169	Molecular Structure, Spectroscopy and Matrix Photochemistry of Fluorocarbonyl Iodide, FC(O)I. Chemistry - A European Journal, 2004, 10, 917-924.	3.3	8
170	Does chlorine peroxide absorb below 250 nm?. Journal of Chemical Physics, 2004, 121, 2611.	3.0	27
171	Accurate theoretical near-equilibrium potential energy and dipole moment surfaces of HgClO and HgBrO. Journal of Chemical Physics, 2004, 120, 6585-6592.	3.0	16
172	Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements. Journal of Chemical Physics, 2003, 119, 11113-11123.	3.0	1,855
173	Mercury Monoxide:  A Systematic Investigation of Its Ground Electronic State. Journal of Physical Chemistry A, 2003, 107, 1783-1787.	2.5	91
174	Effects of Electron Correlation and Scalar Relativistic Corrections on the Thermochemical and Spectroscopic Properties of HOF. Journal of Physical Chemistry A, 2003, 107, 7938-7944.	2.5	11
175	A systematic ab initio study of the structure and vibrational spectroscopy of HgCl2, HgBr2, and HgBrCl. Journal of Chemical Physics, 2003, 119, 12271-12278.	3.0	37
176	Ab Initio Prediction of the Potential Energy Surface and Vibrationalâ^'Rotational Energy Levels of X2Aâ€~ BeOH. Journal of Physical Chemistry A, 2003, 107, 3981-3986.	2.5	16
177	Mercury and Reactive Halogens:Â The Thermochemistry of Hg + {Cl2, Br2, BrCl, ClO, and BrO}. Journal of Physical Chemistry A, 2003, 107, 7465-7470.	2.5	91
178	Cavity Ringdown Spectroscopy of cis-cis HOONO and the HOONO/HONO2 Branching Ratio in the Reaction OH + NO2 + M. Journal of Physical Chemistry A, 2003, 107, 6974-6985.	2.5	48
179	Theoretical Study of the Low-Lying Electronically Excited States of OBrO. Journal of Physical Chemistry A, 2003, 107, 1405-1412.	2.5	11
180	An ab initio study of self-trapped excitons in α-quartz. Journal of Chemical Physics, 2003, 118, 6582-6593.	3.0	34

#	Article	IF	CITATIONS
181	Systematically convergent basis sets with relativistic pseudopotentials. I. Correlation consistent basis sets for the post-d group 13–15 elements. Journal of Chemical Physics, 2003, 119, 11099-11112.	3.0	875
182	Quantum calculations of the rate constant for the O(3P)+HCl reaction on new ab initio 3A″ and 3A′ surfaces. Journal of Chemical Physics, 2003, 119, 9601-9608.	3.0	42
183	The role of triplet states in the long wavelength absorption region of bromine nitrate. Journal of Chemical Physics, 2003, 119, 7864-7870.	3.0	5
184	Performance of coupled cluster theory in thermochemical calculations of small halogenated compounds. Journal of Chemical Physics, 2003, 118, 3510-3522.	3.0	195
185	The bound state spectrum of HOBr up to the dissociation limit: Evolution of saddle-node bifurcations. Journal of Chemical Physics, 2003, 118, 9643-9652.	3.0	14
186	Potential energy surfaces for the 3A″ and 3A′ electronic states of the O(3P)+HCl system. Journal of Chemical Physics, 2003, 119, 9590-9600.	3.0	48
187	Comment on "Atomization energies and enthalpies of formation of the SnBin (n=1–3) gaseous molecules by Knudsen cell mass spectrometry―[J. Chem. Phys. 116, 6957 (2002)]. Journal of Chemical Physics, 2003, 118, 4766-4767.	3.0	4
188	The ab initio potential energy surface and vibrational-rotational energy levels of X 2Σ+ MgOH. Journal of Chemical Physics, 2002, 117, 1529-1535.	3.0	15
189	An L-shaped equilibrium geometry for germanium dicarbide (GeC2)? Interesting effects of zero-point vibration, scalar relativity, and core–valence correlation. Journal of Chemical Physics, 2002, 117, 10008-10018.	3.0	19
190	Electron binding energies of dipole-bound anions at the coupled cluster level with single, double, and triple excitations: HCNâ^' and HNCâ^'. Journal of Chemical Physics, 2002, 116, 3297-3299.	3.0	27
191	The Ionization Potential of Si2N and Si2O. Journal of Physical Chemistry A, 2002, 106, 8435-8441.	2.5	8
192	The Challenge of High-Resolution Dynamics: Rotationally Mediated Unimolecular Dissociation of HOCl. ACS Symposium Series, 2002, , 346-360.	0.5	0
193	A hierarchical family of global analytic Born–Oppenheimer potential energy surfaces for the H+H2 reaction ranging in quality from double-zeta to the complete basis set limit. Journal of Chemical Physics, 2002, 116, 4142-4161.	3.0	129
194	Accurate correlation consistent basis sets for molecular core–valence correlation effects: The second row atoms Al–Ar, and the first row atoms B–Ne revisited. Journal of Chemical Physics, 2002, 117, 10548-10560.	3.0	1,672
195	Should bromoform absorb at wavelengths longer than 300 nm?. Journal of Chemical Physics, 2002, 117, 6103-6107.	3.0	22
196	Ab Initio Potential Energy Surface and Vibrationalâ^ Rotational Energy Levels of X2Σ+CaOH. Journal of Physical Chemistry A, 2002, 106, 9595-9599.	2.5	188
197	Theab initiopotential energy surface and vibrational–rotational energy levels of dilithium monoxide, Li2O. Journal of Chemical Physics, 2002, 116, 9255-9260.	3.0	18
198	On the Enthalpy of Formation of Hydroxyl Radical and Gas-Phase Bond Dissociation Energies of Water and Hydroxyl. Journal of Physical Chemistry A, 2002, 106, 2727-2747.	2.5	466

#	Article	IF	CITATIONS
199	Heats of Formation of CBr, CHBr, and CBr2from Ab Initio Quantum Chemistry. Journal of Physical Chemistry A, 2002, 106, 4725-4728.	2.5	52
200	Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited. Journal of Chemical Physics, 2001, 114, 9244-9253.	3.0	1,463
201	Accurate ab initio spectroscopic and thermodynamic properties of BBrx and HBBrx (x=0, +1, â^1). Journal of Chemical Physics, 2001, 115, 7513-7521.	3.0	14
202	Evidence for a Lower Enthalpy of Formation of Hydroxyl Radical and a Lower Gas-Phase Bond Dissociation Energy of Water. Journal of Physical Chemistry A, 2001, 105, 1-4.	2.5	175
203	Heats of formation and ionization energies of NHx, x=0–3. Journal of Chemical Physics, 2001, 115, 2576-2581.	3.0	115
204	Ab initio characterization of low-lying triplet state potential-energy surfaces and vibrational frequencies in the Wulf band of ozone. Journal of Chemical Physics, 2001, 115, 10404.	3.0	20
205	The unimolecular dissociation of the OH stretching states of HOCI: Comparison with experimental data. Journal of Chemical Physics, 2001, 115, 8880-8887.	3.0	19
206	Heats of formation of CCl and CCl2 from ab initio quantum chemistry. Journal of Chemical Physics, 2001, 115, 6327-6329.	3.0	25
207	An accurate global ab initio potential energy surface for the X 1A′ electronic state of HOBr. Journal of Chemical Physics, 2000, 113, 4598-4612.	3.0	45
208	Quantum scattering calculations of the O(1D)+HCl reaction using a newab initiopotential and extensions ofJ-shifting. Journal of Chemical Physics, 2000, 113, 6186-6196.	3.0	48
209	Low-lying excited states of HOOOCI and HOOOBr. Journal of Chemical Physics, 2000, 112, 8483-8486.	3.0	8
210	A complete active space self-consistent field multireference configuration interaction study of the low-lying excited states of BrO. Journal of Chemical Physics, 2000, 113, 8556-8560.	3.0	13
211	Convergence of Breit–Pauli spin–orbit matrix elements with basis set size and configuration interaction space: The halogen atoms F, Cl, and Br. Journal of Chemical Physics, 2000, 112, 5624-5632.	3.0	46
212	Approximating the basis set dependence of coupled cluster calculations: Evaluation of perturbation theory approximations for stable molecules. Journal of Chemical Physics, 2000, 113, 7799-7808.	3.0	58
213	The Molecular Structures and Energetics of Cl2CO, ClCO, Br2CO, and BrCO. Journal of Physical Chemistry A, 2000, 104, 6227-6232.	2.5	17
214	Ab Initio Characterization of the HCOx (x = â^'1, 0, +1) Species:  Structures, Vibrational Frequencies, CH Bond Dissociation Energies, and HCO Ionization Potential and Electron Affinity. Journal of Physical Chemistry A, 2000, 104, 2287-2293.	2.5	36
215	The Molecular Structure and Ionization Potential of Si2:  The Role of the Excited States in the Photoionization of Si2. Journal of Physical Chemistry A, 2000, 104, 2326-2332.	2.5	32
216	Accurate ab initio near-equilibrium potential energy and dipole moment functions of the ground electronic state of ozone. Journal of Chemical Physics, 2000, 112, 8378-8386.	3.0	54

#	Article	IF	CITATIONS
217	The utility of many-body decompositions for the accurate basis set extrapolation of ab initio data. Journal of Chemical Physics, 1999, 111, 3806-3811.	3.0	28
218	A theoretical study of the vibrational energy spectrum of the HOCl/HClO system on an accurate ab initio potential energy surface. Journal of Chemical Physics, 1999, 111, 7446-7456.	3.0	83
219	Perturbative inversion of the HOCl potential energy surface via singular value decomposition. Chemical Physics Letters, 1999, 312, 494-502.	2.6	34
220	Ground-State Proton-Transfer Tautomer of the Salicylate Anion. Journal of Physical Chemistry A, 1999, 103, 9644-9653.	2.5	33
221	Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton. Journal of Chemical Physics, 1999, 110, 7667-7676.	3.0	1,309
222	Re-examination of atomization energies for the Gaussian-2 set of molecules. Journal of Chemical Physics, 1999, 110, 8384-8396.	3.0	263
223	Absorption and Resonance Raman Study of the2B1(X)â^'2A2(A) Transition of Chlorine Dioxide in the Gas Phase. Journal of Physical Chemistry A, 1999, 103, 1748-1757.	2.5	30
224	The ab initio potential energy surface and spectroscopic constants of HOCl. Chemical Physics Letters, 1998, 283, 139-146.	2.6	19
225	Core-valence correlation effects for molecules containing first-row atoms. Accurate results using effective core polarization potentials. Theoretical Chemistry Accounts, 1998, 100, 103-111.	1.4	11
226	An examination of intrinsic errors in electronic structure methods using the Environmental Molecular Sciences Laboratory computational results database and the Gaussian-2 set. Journal of Chemical Physics, 1998, 108, 154-176.	3.0	246
227	Use of Mo/ller-Plesset perturbation theory in molecular calculations: Spectroscopic constants of first row diatomic molecules. Journal of Chemical Physics, 1998, 108, 4761-4771.	3.0	48
228	Heats of Formation of Simple Boron Compounds. Journal of Physical Chemistry A, 1998, 102, 7053-7059.	2.5	88
229	Predicting the Proton Affinities of H2O and NH3. Journal of Physical Chemistry A, 1998, 102, 2449-2454.	2.5	116
230	The Effect of Basis Set Superposition Error (BSSE) on the Convergence of Molecular Properties Calculated with the Correlation Consistent Basis Sets. Advances in Quantum Chemistry, 1998, 31, 105-135.	0.8	80
231	Accurate ab initio near-equilibrium potential energy and dipole moment functions of the X 2B1 and first excited 2A2 electronic states of OClO and OBrO. Journal of Chemical Physics, 1998, 109, 8864-8875.	3.0	77
232	Benchmark calculations with correlated molecular wave functions. IX. The weakly bound complexes Ar–H2 and Ar–HCl. Journal of Chemical Physics, 1998, 109, 2233-2241.	3.0	46
233	Accurate variational calculations and analysis of the HOCl vibrational energy spectrum. Journal of Chemical Physics, 1998, 109, 10273-10283.	3.0	75
234	An accurateab initioHOCl potential energy surface, vibrational and rotational calculations, and comparison with experiment. Journal of Chemical Physics, 1998, 109, 2662-2671.	3.0	110

#	Article	IF	CITATIONS
235	Coupled cluster prediction of vibrational band intensities for SiF2 and PF2+. Journal of Chemical Physics, 1997, 106, 8283-8284.	3.0	2
236	Coupled cluster spectroscopic properties and isomerization pathway for the cyanate/fulminate isomer pair, NCOâ^'/CNOâ^'. Journal of Chemical Physics, 1997, 106, 5123-5132.	3.0	26
237	Benchmark calculations with correlated molecular wave functions. VIII. Bond energies and equilibrium geometries of the CHn and C2Hn (n=1–4) series. Journal of Chemical Physics, 1997, 106, 4119-4140.	3.0	116
238	Experiments and Theory on the Thermal Decomposition of CHCl3and the Reactions of CCl2. Journal of Physical Chemistry A, 1997, 101, 8653-8661.	2.5	58
239	Accurate Calculations of the Electron Affinity and Ionization Potential of the Methyl Radical. Journal of Physical Chemistry A, 1997, 101, 9405-9409.	2.5	64
240	Benchmark Calculations with Correlated Molecular Wave Functions. 11. Energetics of the Elementary Reactions F + H2, O + H2, and Hâ€~ + HCl. Journal of Physical Chemistry A, 1997, 101, 6280-6292.	2.5	53
241	Computer Simulation of Chloroform with a Polarizable Potential Model. Journal of Physical Chemistry B, 1997, 101, 3413-3419.	2.6	78
242	Benchmark calculations with correlated molecular wave functions. Theoretical Chemistry Accounts, 1997, 97, 251-259.	1.4	129
243	The photodissociation of ClO2: Potential energy surfaces of OClO→Cl+O2. Journal of Chemical Physics, 1996, 105, 9823-9832.	3.0	65
244	Ab initio investigation of the N2–HF complex: Accurate structure and energetics. Journal of Chemical Physics, 1996, 104, 5883-5891.	3.0	41
245	A coupled cluster study of the spectroscopic properties and electric dipole moment functions of nitrous sulfide. Journal of Chemical Physics, 1996, 104, 7073-7080.	3.0	6
246	The dipole moment and magnetic hyperfine properties of the excited A 2Σ+(3sσ) Rydberg state of nitric oxide. Journal of Chemical Physics, 1995, 103, 3517-3525.	3.0	22
247	A coupled cluster study of the structures, spectroscopic properties, and isomerization path of NCSâ^' and CNSâ^'. Journal of Chemical Physics, 1995, 103, 9304-9311.	3.0	15
248	Benchmark calculations with correlated molecular wave functions. VII. Binding energy and structure of the HF dimer. Journal of Chemical Physics, 1995, 102, 2032-2041.	3.0	274
249	Molecular dynamics simulations of liquid, interface, and ionic solvation of polarizable carbon tetrachloride. Journal of Chemical Physics, 1995, 103, 7502-7513.	3.0	75
250	Accurate multireference configuration interaction calculations on the lowest1î£+and3î electronic states of C2, CN+, BN, and BO+. Journal of Chemical Physics, 1995, 102, 262-277.	3.0	119
251	An extended basis set ab initio study of Li+(H2O)n, n=1–6. Journal of Chemical Physics, 1994, 100, 4981-4997	3.0	159
252	Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H+H2→H2+H reaction. Journal of Chemical Physics, 1994, 100, 7410-7415.	3.0	1,636

#	Article	IF	CITATIONS
253	Benchmark calculations with correlated molecular wave functions. III. Configuration interaction calculations on first row homonuclear diatomics. Journal of Chemical Physics, 1993, 99, 9790-9805.	3.0	181
254	Benchmark calculations with correlated molecular wave functions. II. Configuration interaction calculations on first row diatomic hydrides. Journal of Chemical Physics, 1993, 99, 1930-1944.	3.0	263
255	A multireference configuration interaction study of the lowâ€lying electronic states of ClO+2and theX 1A1state of ClOâ^'2. Journal of Chemical Physics, 1993, 99, 302-307.	3.0	27
256	Multireference configuration interaction calculations of the lowâ€lying electronic states of ClO2. Journal of Chemical Physics, 1992, 96, 8948-8961.	3.0	144
257	A comparison of the efficiency and accuracy of the quadratic configuration interaction (QCISD), coupled cluster (CCSD), and Brueckner coupled cluster (BCCD) methods. Chemical Physics Letters, 1992, 190, 1-12.	2.6	1,561
258	Submillimeter wave spectroscopy of XeH+and XeD+. Journal of Chemical Physics, 1991, 95, 2352-2360.	3.0	47
259	Complete active space self onsistent field potential energy surfaces, dipole moment functions, and spectroscopic properties of O3, CF2, NOâ^2, and NF+2. Journal of Chemical Physics, 1991, 94, 414-430.	3.0	57
260	Spectroscopic constants and dipole moment functions of the 22 electron dications SiNe++, PF++, SO++, NCl++, and CAr++. Journal of Chemical Physics, 1991, 95, 3528-3535.	3.0	18
261	The microwave spectrum of PO+: Comparison to SiF+. Journal of Chemical Physics, 1991, 94, 3504-3510.	3.0	17
262	Spectroscopic properties of OCS and OCCl+ by Mo/ller–Plesset perturbation theory and configuration interaction. Journal of Chemical Physics, 1991, 94, 431-441.	3.0	18
263	Configuration interaction spectroscopic properties of X 2Σ+ HNC+ and X 2ΠHCN+. Journal of Chemical Physics, 1990, 93, 4946-4953.	3.0	19
264	The potential energy and dipole moment surfaces of NF2 and Oâ^'3 by complete active space self onsistent field. Journal of Chemical Physics, 1990, 93, 5020-5028.	3.0	20
265	An ab initio investigation of the spectroscopic properties of ClF, ArF+, SFâ^', and ClOâ^' in their ground electronic states. Journal of Chemical Physics, 1990, 92, 7412-7417.	3.0	28
266	Configuration interaction potential energy and dipole moment functions for thirteen 22 electron diatomics. Journal of Chemical Physics, 1990, 92, 6061-6068.	3.0	40
267	Spectroscopic properties of theX 1Σ+anda 3Πelectronic states of CF+, SiF+, and CCl+by multireference configuration interaction. Journal of Chemical Physics, 1990, 93, 1889-1894.	3.0	31
268	Theoretical dipole moment functions involving the a 3Πand a' 3Σ+ states of carbon monoxide. Journ Chemical Physics, 1990, 93, 5029-5036.	al of 3.0	9
269	Anabinitiostudy of the 24 electron radicals PF, SO, NCl, SF+, ClO+, SiFâ^', POâ^', NSâ^', and CClâ^'in theirX 3â^'â^'electronic states. Journal of Chemical Physics, 1990, 93, 1876-1888.	3.0	51
270	Ground state spectroscopic and thermodynamic properties of AlOâ^', SiNâ^', CPâ^', BSâ^', BOâ^', and CNâ^' from Mo/ller–Plesset perturbation theory. Journal of Chemical Physics, 1989, 90, 7239-7250.	3.0	42

Kirk A Peterson

#	Article	lF	CITATIONS
271	An investigation of the HBCl+–BClH+ system by Mo/ller–Plesset perturbation theory. Journal of Chemical Physics, 1988, 88, 1074-1079.	3.0	23
272	The microwave spectrum of SiF+. Journal of Chemical Physics, 1988, 89, 5454-5459.	3.0	37
273	Predictions of the rotational and vibrational spectra of SiF+, PO+, and NS+ by Mo/ller–Plesset perturbation theory. Journal of Chemical Physics, 1988, 89, 4929-4944.	3.0	37
274	An ab initio investigation of the spectroscopic properties of BCl, CS, CCl+, BF, CO, CF+, N2, CNâ^', and NO+. Journal of Chemical Physics, 1987, 87, 4409-4418.	3.0	72